2019 Annual Groundwater Summary

Brickhaven No. 2 Mine Tract "A" Structural Fill

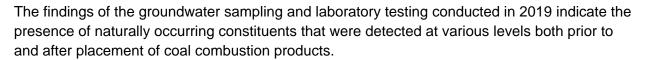
Charah Solutions, Inc.

Moncure, Chatham County, North Carolina January 31, 2020

HDR Engineering, Inc. of the Carolinas 440 S Church Street, Suite 1000, Charlotte, NC 28202-2075 704.338.6700 NC License F0116

2019 Annual Groundwater Summary

Brickhaven No.2 Mine Tract "A" Structural Fill Permit 19-10


The Brickhaven No.2 Mine Tract "A" Structural Fill groundwater monitoring system is designed to meet the requirements of the North Carolina Coal Ash Management Act of 2014 (CAMA) and North Carolina Department of Environmental Quality Rule 15A NCAC 13B Section .1631.

HDR conducted the required 2019 semi-annual sampling events on January 21-25 and July 8-12, 2019. Groundwater monitoring and sampling at the site is governed by the following:

- North Carolina Coal Ash Management Act (CAMA) of 2014 (Senate Bill 729)
- Water Quality Monitoring Plan Brickhaven No.2 Mine Tract "A" Structural Fill, approved March 2015
- North Carolina Department of Environmental Quality (NCDEQ) Permit No. 1910-STRUC-2015, issued June 5, 2015
- NCDEQ Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling, April 2008
- NCDEQ Division of Water Management memorandum concerning electronic document submittal for routine groundwater and surface water monitoring, November 5, 2014
- U.S. Environmental Protection Agency (EPA) Region I, *Low Stress (low flow) Purging* and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells, January 19, 2010
- EPA 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance and CFR 40 257.93 (f)(3)

The spring and fall summary reports with an EPA method of statistical analysis were submitted to the NCDEQ Division of Waste Management on June 7 and December 9, 2019 respectively. The reports are attached for reference and can be found on the NCDEQ website at this location https://deq.nc.gov/about/divisions/waste-management/laserfiche. The following information has been provided in those reports:

- Status of the groundwater monitoring for the structural fill
- A summary of site conditions and key actions completed during the routine reporting period
- Description of conditions encountered and actions employed to define the conditions
- Key activities proposed for the upcoming year
- A map showing the background (or upgradient) and downgradient monitoring wells
- Monitoring data obtained from sampling of wells, including information on the samples collected

On June 21, 2019, the NCDEQ issued a letter to Charah to begin assessment monitoring, citing exceedances of groundwater standards established in 15A NCAC 2L .0202 (2L Standards) and surface water standards established in 15A NCAC 2B .0211 and .0216 (2B Standards) at the Brickhaven No. 2 Mine Structural Fill. Charah submitted a Groundwater and Surface Water Assessment Work Plan (Work Plan) to NCDEQ on August 16, 2019. Collection and analysis of the following samples were proposed in the Work Plan:

- Soil samples from areas within the former General Shale mine, but beyond the area of CCP placement by Charah;
- Groundwater samples from proposed and existing monitoring wells;
- Surface water samples from proposed and existing locations; and,
- Leachate samples from the designated leachate sampling location.

In addition, Charah proposed to perform geochemical analyses of soil and ash quality data to groundwater quality data to confirm or deny the Structural Fill as a potential source of elevated concentrations of inorganic constituents reported in groundwater and surface water in the vicinity of the Site. Further, these data will be used to construct a three-dimensional groundwater flow and transport model to demonstrate groundwater movement patterns in the subsurface near the Structural Fill and to simulate the fate and transport of the constituents detected during groundwater monitoring. Based on the schedule proposed by Charah in correspondence dated September 30, 2019 and approved by NCDEQ on October 4, 2019, the results of assessment monitoring activities will be summarized in an Assessment Monitoring Report to be submitted to NCDEQ on July 27, 2020. Copies of the Work Plan and schedule submitted to NCDEQ are attached.

As HDR's authorized representative, I have prepared or supervised the preparation of the referenced documents above; which have been prepared in general accordance with industry standards and practices; and the information contained therein is truthful and accurate to the best of my knowledge.

Mark P. Filardi, LG Sr. Geologist

HDR Engineering, Inc. of the Carolinas 440 South Church St, Suite 1000 Charlotte, NC 28202-2075 704.338.6700 NC License F0116

FX

Attachment A – 2019 First Semi-Annual Detection Monitoring Report

DENR USE ONLY: Paper Re	eport Electronic Data - Email CD (da	ata loaded: Yes / No)	Doc/Event #:	
NC DENR Division of Waste Managen	nont Solid Wasto		Environ	mental Monitoring
	ation attached to it are "Public Records" a	a defined in NC Conora	I Statuta 122 1 Aa auch	Reporting Form
	ination by any person upon request (NC G		I Statute 132-1. As such	, these documents are
	each individually monitored unit.			
	gibly. Ie with values that attain or exceed NC 2L ary analysis of the cause and significance of			
 Attach a notification tabl 	le of any groundwater or surface water val le of any methane gas values that attain c 9 (4)(a)(i)			ny structures on or nearby the
Send the original signed	d and sealed form, any tables, and Electro rice Center, Raleigh, NC 27699-1646.	onic Data Deliverable to	: Compliance Unit, NCD	ENR-DWM, Solid Waste
	Pata Submittal Information			
Name of entity submitting data	(laboratory, consultant, facility owner):			
Green Meadow - Charah Solu	tions, Inc.			
Contact for questions about dat	ta formatting. Include data preparer's n	ame, telephone numb	er and E-mail address:	
Name: Michael Plummer, PE	Phon	e: 704-338-6700		
E-mail: michael.plummer@hdrin	ic.com			
Facility name:	Facility Address:	Facility Permit #		Actual sampling dates (e.g., October 20-24, 2006)
Charah, LLC	1271 Moncure-Flatwook Rd	1910-Struc-2015		January 21-25, 2019
Brickhaven No.2 Mine	Chatham County			
Tract 'A'	Moncure, NC			
Environmental Status: (Check a		Assessment N	Nonitoring	Corrective Action
Leachate monitoring data	lata from monitoring wells	Methane gas mon Corrective action		
Surface water monitoring	data	Other(specify)		
Yes, a notification of value monitoring points, dates, a preliminary analysis of the	rface water standards were exceeded. es exceeding a groundwater or surface wa analytical values, NC 2L groundwater stand cause and significance of any concentrati es exceeding an explosive methane gas lim nane gas limits.	dard, NC 2B surface wa ion.	ter standard or NC Solid	Waste GWPS and
Certification				
Furthermore, I have attached c levels, and a preliminary analys	the information reported and statemen omplete notification of any sampling v sis of the cause and significance of co	values meeting or exc ncentrations exceedin	eeding groundwater st g groundwater standa	tandards or explosive gas rds. I am aware that there
Michael Plummer, PE	king any false statement, representation	n, or certification inclu 704-33		a fine and imprisonment.
Facility Representative Name (Print)	Project Manager Title		ode) Telephone Number I	Han
Talle		6/7/2019	Affix NC prepared	actossicoal Geologist Seal
Signature	(Date	SO ROFES	SION
HDR Engineering, INC. of the Card	olinas, 440 S. Church St. Ste. 1000, Charl	otte, NC 28202	SE/ 0254	the start
Facility Representative Address			ECL SAGIN	EER
F0116			THEL D	PLUTT
NC PE Firm License Number (if ap	oplicable effective May 1, 2009)		11111	1188

2019 First Semi-Annual Detection Monitoring Report

Brickhaven No.2 Mine Tract "A" Structural Fill

Charah Solutions, Inc.

Moncure, Chatham County, North Carolina June 7, 2019

HDR Engineering, Inc. of the Carolinas 440 S Church Street, Suite 1000, Charlotte, NC 28202-2075 704.338.6700 NC License F0116

Table of Contents

Table of Co	ntents	i
1 Introdu	ction	1
	rpose	
1.2 Re	gulatory Compliance	1
	e Location and Operation	
1.4 Gr	oundwater Monitoring System	2
1.5 Site	e Topography and Geographical Setting	5
	ologic and Hydrogeologic Setting	5
1.6.1	Regional Geology	5
1.6.2	Site Geology	
1.6.3	Regional Hydrogeology	7
2 Ground	water Flow Characteristics	8
2.1.1	Groundwater Flow Direction	.10
2.1.2	Hydraulic Conductivity	
2.1.3	Horizontal Hydraulic Gradients	.10
2.1.4	Groundwater Flow Velocity	.11
3 Samplii	ng Procedures	.12
3.1 Gr	oundwater Sampling Procedures	.12
3.2 Su	rface Water Sampling Procedures	.12
3.3 Lea	achate Sampling Procedures	.12
4 Water 0	Quality	.13
4.1 Ba	ckground Site Conditions	.13
4.2 Gr	oundwater Analytical Results	.13
4.3 Su	rface Water Analytical Results	.16
4.4 Lea	achate Analytical Results	.16
5 Statistic	S	.17
5.1 Me	thodology	.17
5.1.1	Statistical Analysis	.17
5.1.2	Outliers	.18
5.1.3	Data Distribution	.18
5.1.4	Trends	.18
5.1.5	Spatial Variability	.19
5.2 Ev	aluation for SSIs over Background	.19
5.3 Sta	itistical Summary	.20
6 Conclus	sions	.21
6.1 Gr	oundwater	.21
6.2 Su	rface Water	.21
6.3 Lea	achate	.21
6.4 Sta	itistical Analysis	.21
7 Recom	mendations	.23

FS

8	References	.24
-		

List of Tables

Table 1: Well Construction, Survey, and Groundwater Elevations	4
Table 2: Historic Groundwater Elevations	
Table 3: Hydraulic Conductivity	. 10
Table 4: Horizontal Hydraulic Gradients (i, dh/dl)	. 11
Table 5: Analytical Results - January 2019	. 15

Figures

- Figure 1: Regional Site Location Map
- Figure 2: Regional USGS Topographic Map
- Figure 3: Sample Location Map
- Figure 4: Potentiometric Surface Map January 2019
- Figure 5: Leachate Sample Collection Location

Appendices

- Appendix A Field Data Sheets
- Appendix B Concentration vs. Time Plots
- Appendix C Laboratory Reports, Chains of Custody, & Quality Control Data
- Appendix D Electronic Data Deliverables (CD-ROM only)
- Appendix E Statistical Analysis Memo

F)5

List of Select Acronyms

µg/L	micrograms per liter
bMDL	below Method Detection Limit
CAMA	North Carolina Coal Ash Management Act of 2014
CCP	Coal Combustion Products
DEC	Duke Energy Carolinas
DEP	Duke Energy Progress
DO	Dissolved Oxygen
EDD	Electronic Data Deliverable
EPA	United States Environmental Protection Agency
ft./ft.	feet / foot
ID	Inner Diameter
KM	Kaplan-Meier Method
NCDENR	North Carolina Department of Environment and Natural Resources
NCDEQ	North Carolina Department of Environmental Quality
NCGPS	North Carolina groundwater protection standard
Ν	Standard Penetration Resistance
ND	Non-detects
NPPL	Non-parametric Prediction Limit
NTU	Nephelometric turbidity units
MCL	Maximum Contaminant Levels
MDL	Method Detection Limit
MLE	Maximum Likelihood Estimate
msl	mean sea level
OD	Outer Diameter
ORP	Oxidation-Reduction Potential
PL	Predictive Limit
PPL	Parametric Prediction Limit
RCRA	Resource Conservation and Recovery Act
ROS	Regression on Order Statistics
SSI	Statistically Significant Increase
UPL	Upper Prediction Limit
USCS	Unified Soil Classification System

FX

1 Introduction

1.1 Purpose

The purpose of this 2019 First Semi-Annual Detection Monitoring Report is to summarize semiannual detection monitoring at the Brickhaven No.2 Mine Tract "A" Structural Fill site in Moncure, Chatham County, North Carolina. The report includes results from the January 21-25, 2019 semi-annual detection monitoring event, as well as the statistical results calculated for this monitoring event.

The next semi-annual monitoring event will take place in July 2019.

1.2 Regulatory Compliance

Operating under Facility Permit #1910-STRUT-2015, Charah is required to monitor groundwater and surface water quality at designated locations. Per the Water Quality Monitoring Plan (Buxton, 2015a), groundwater samples are collected from 11 monitoring wells (MW-1 through MW-8, BG-1, and BG-2) and two surface water locations (SW-1 and SW-2). Groundwater samples are analyzed for constituents listed in NCDEQ Solid Waste Appendix I and II, 40 CFR 257 Appendix III, and 40 CFR 257 Appendix IV. If sampling results indicate impacts to groundwater or surface water, Charah must notify NCDEQ within 14 days. If no impacts are observed, Charah must submit a report of the sampling results to NCDEQ with 120 days of the sampling event.

Groundwater monitoring and sampling at the site is governed by the following:

- North Carolina Coal Ash Management Act (CAMA) of 2014 (Senate Bill 729).
- Water Quality Monitoring Plan, Brickhaven No.2 Mine Tract "A" Structural Fill, approved March 2015 (Buxton, 2015a).
- North Carolina Department of Environment and Natural Resources (NCDENR)¹ Permit No. 1910-STRUC-2015, issued June 5, 2015.
- NCDENR Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling, April 2008 including Groundwater Rules .1600.
- NCDENR Division of Water Management memorandum concerning electronic document submittal for routine groundwater and surface water monitoring, November 5, 2014.
- U.S. Environmental Protection Agency (EPA) Region I, *Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells*, January 19, 2010.

Groundwater monitoring and sampling at the site is also conducted in general accordance with the U.S. EPA's "Disposal of Coal Combustion Residuals from Electric Utilities" rule (CCR Rule).

¹ On September 18, 2015, the North Carolina Department of Environment and Natural Resources (NCDENR) became the North Carolina Department of Environmental Quality (NCDEQ). Both naming conventions are used in this report, as appropriate.

1.3 Site Location and Operation

The site is located in Chatham County, approximately four miles southeast of Moncure, North Carolina (**Figure 1**). The owner of the site is Green Meadow, LLC (Green Meadow). Charah Solutions, Inc. (Charah) is responsible for the operation and maintenance of the site. The mine property is approximately 301 acres in total; of which 145 acres is permitted for structural fill placement of coal combustion products (CCP).

The property located within the structural fill area was previously owned by General Shale Brick, Inc., which operated the site and an adjacent property as a clay mine beginning in 1985 for their off-site brick manufacturing facility. Mined clay was stockpiled and then transported approximately 3.5 miles south to Brickhaven, North Carolina for brick manufacturing.

The area immediately surrounding the site primarily consists of rural residential (approximately 2,500 feet east, 1,000 feet southeast, and 1,000 feet southwest), commercial, industrial, wooded and agricultural property. According to information obtained from the Chatham County GIS website (October 2015), municipal water is available to the surrounding area.

Charah began CCP placement in the first composite liner containment system (Cell 1, Sub Cell 1A) on October 23, 2015. CCP placement has occurred in Cell 1, Cell 2, Cell 6A and Cell 6B. Charah has placed just over 7.3 million tons of CCP material in the structural fill at the time of this report. CCP materials (including fly ash, bottom ash, boiler slag, and/or flue gas desulfurization materials) were initially brought to the site by truck through October 2015 until transportation was changed to rail in January 2016. The CCP originated at the Duke Energy Carolinas (DEC) Riverbend Steam Station and Duke Energy Progress (DEP) L.V. Sutton Energy Complex (Sutton Plant) sites.

Leachate (i.e., product generated from the liquids present in the fill at the time of placement and/or stormwater that infiltrates the fill) is managed on-site through the collection, storage, and disposal of the resultant liquid. Green Meadow has approved pump and haul permits to dispose of leachate at the City of Sanford's Big Buffalo Creek Wastewater Treatment Plant and the Town of Spring Lake's South Harnett Regional Wastewater Treatment Plant.

1.4 Groundwater Monitoring System

The groundwater monitoring system was designed to provide background groundwater quality data prior to the placement of CCP in the structural fill and early detection of potential CCP constituents subsequent to CCP placement to be protective of human health and the environment. The groundwater monitoring system is comprised of ten (10) wells: eight wells are located downgradient/side-gradient (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7R and MW-8) and two wells are considered to represent background groundwater quality (BG-1 and BG-2). Well construction details are presented in **Table 1**.

Background monitoring well BG-1 was installed in July of 2015 near the entrance of the site along Moncure-Flatwood Road. This location was selected to provide groundwater quality data in an area of the site presumed to not be impacted by historic or current usage of the site. Upon statistical analysis of groundwater quality data collected pre- and post-CCP placement,

concentrations of target analytes from well BG-1 appear to be anonymously low when compared to pre-CCP conditions elsewhere on-site. With approval from NCDEQ, Charah installed a second background well (BG-2) southwest of the structural fill in December 2018 to evaluate spatial variability of inorganic concentrations across the site. This 2019 first semiannual sampling event constitutes the first time well BG-2 was sampled. A boring log and survey data for BG-2 are included in **Appendix A**.

MW-7R was installed in April of 2017 as a replacement for monitoring well MW-7 as documented and approved in the May 25, 2017 memorandum to NCDEQ - Solid Waste Section. MW-7 will temporarily remain onsite for water level gauging purposes only.

- 8	- 12

Well ID	Northing	Easting	Pad Elev.	TOC Elev.	TD (ft. BGS)	TD (ft. BTOC)	Screen Length (ft.)	Screened Interval (ft. BGS)	DTW (ft. BTOC)	GW Elevation	Lithologic Unit
BG-1	670898.50	1996348.25	225.64	228.19	40.50	43.05	15	26-41	9.69	218.50	Layered Rock/PWR*
BG-2	669278.99	1990476.10	191.41	194.23	23.29	26.11	10	13-23	10.95	183.28	Layered Rock/PWR*
MW-1	674737.98	1993417.69	277.28	280.08	72.50	75.30	15	57-72	59.56	220.52	Layered Rock/PWR*
MW-2	673677.07	1994537.54	229.27	231.76	47.66	50.15	15	30-45	36.15	195.61	Layered Rock/PWR*
MW-3	672474.63	1994834.76	220.00	222.56	40.80	43.36	15	25-40	23.53	199.03	PWR
MW-4	671326.48	1994974.40	214.49	217.13	22.70	25.34	10	13-23	12.97	204.16	Residuum/PWR
MW-5	671081.19	1993779.03	242.72	244.86	44.00	46.14	10	34-44	21.00	223.86	PWR
MW-6	671267.60	1992793.34	228.63	231.10	27.00	29.47	15	12-27	6.21	224.89	Residuum/PWR
MW-7	672306.28	1992642.35	229.53	231.71	15.00	17.18	10	5-15	16.31	215.40	Residuum/PWR
MW-7R	672221.96	1992702.98	239.99	242.22	36.00	39.94	10	26-36	22.40	219.82	Residuum/PWR
MW-8	673304.83	1992200.37	233.41	236.47	46.00	49.06	15	31-46	34.62	201.85	PWR

Table 1: Well Construction, Survey, and Groundwater Elevations

Notes:

1. Top-of-casing, ground surface elevations and horizontal locations at MW-4 (PZM-1), MW-5 (PZM-22) and MW-7 (PZM-27) surveyed by Lawrence Surveying of Monroe, NC.

2. Top-of-casing, ground surface elevations and horizontal locations at BG-1, MW-1, MW-3, MW-6, MW-8 and MW-7R surveyed by McAdams of Durham, NC.

3. Top-of-casing, ground surface elevations and horizontal location at monitoring well MW-2 surveyed by McAdams of Durham, NC.

4. Top-of-casing, ground surface elevations and horizontal location at monitoring well BG-2 surveyed by McAdams of Durham, NC.

5. TD=total depth; BGS=below ground surface; TOC=top of casing; DTW = Depth-to-Water; BTOC = below top-of-casing; GW = groundwater.

6. Depth to water measurements obtained on January 21, 2019, to the nearest 0.01 foot with a water level meter.

7. Well locations and elevations based on NAD 83 horizontal datum and NGVD88 vertical datum.

8. * = interpreted lithologic unit based on relative drilling hardness and geologic judgment during well installation.

1.5 Site Topography and Geographical Setting

Based on review of the 1993 USGS topographic quadrangle (**Figure 2**) and GIS mapping, the topography of the site and immediately surrounding area can be characterized by moderately rolling hills, which are dissected by dendritic creeks. Prior to mining by General Shale, a topographic ridge was present within the site, extending from the northwestern corner of the present-day structural fill toward the southeast. Thus, historic drainage was to the north/northwest/west and to the northeast/east/southeast away from the ridge, as shown on **Figure 3**.

1.6 Geologic and Hydrogeologic Setting

1.6.1 Regional Geology

The site is located within the Piedmont physiographical province of North Carolina, which is a northeast-southwest trending region extending from New York to Alabama.

According to the 1985 North Carolina Geologic Map prepared by the North Carolina Geological Survey, the site is located in the Triassic Basin Belt of the Piedmont physiographic province. The basement rocks of the Triassic Basin Belt include conglomerate, sandstone, mudstone, limestone, coal, and shale. The majority of the subject property is located within the Sanford Formation which contains conglomerate, fanglomerate, sandstone, and mudstone. The far western portion of the site is located in the Cummock Formation which contains sandstone, mudstone, gray and black coal, and carbonaceous shale. The Triassic Basin is bounded by felsic metavolcanic rock within the Carolina Slate Belt approximately 6.5 miles to the northwest; and is contacted by metamorphosed granite and biotite gneiss and schist of the Raleigh Belt along a normal fault approximately 2.5 miles to the southeast. The Triassic Basin formations have been intruded by north northwest-south southeast trending igneous diabase dikes during the Jurassic Period (~144 to 208 Ma), and contain northeast-southwest trending normal faults. However, none of these faults were indicated to exist at the subject site on the 1985 geologic map (NCDENR, 1985).

In the Piedmont, the bedrock is typically overlain by a mantle of weathered rock (residuum/saprolite), which has an average thickness of approximately 25 feet. The residuum/saprolite consists of varying amounts of unconsolidated clays, silts, and sands, with lesser amounts of rock fragments. Due to the range of the parent rock composition and the variable susceptibility to weathering of each rock type, the residuum/saprolite range widely in color, texture, and thickness. Generally, the residuum/saprolite is thickest near inter-stream divides (ridges) and thins toward stream beds. In profile, the residuum/saprolite normally grades from clayey soils near the land surface to sandier, partially weathered rock above competent bedrock (Buxton, 2014).

1.6.2 Site Geology

The geology of the site can be subdivided into six units which include fill, flood plain, soil horizon, residuum, partially weathered rock, and layered rock. These units generally grade downward from a soil horizon, to residuum, to partially weathered rock and finally layered rock. Fill materials were limited to the road bed and berm located around the east and west sides of

MW-4. Flood plain sediments were only identified at MW-4 on the southeast corner of the site. The following summary of site-specific units is based on boring logs originally included in the *Design Hydrogeologic Report* (Buxton, March 2016).

FILL

Fill materials were primarily identified in the road bed and berm located around the east and west sides near MW-4 and generally consisted of mottled reddish yellow, orange, brown, and light gray sandy silty clay with quartz and brick gravel.

FLOOD PLAIN

Flood plain sediments were only located adjacent to MW-4 on the southeast corner of the site. Sediments were associated with a former adjacent intermittent tributary creek and can be generally characterized as mottled light gray fine sandy silty clay. The flood plain sediments were approximately 5 feet thick in this area and had been deposited above residuum. Based on geotechnical laboratory data, the flood plain sediments were identified as lean clay (CL) under the Unified Soil Classification System (USCS).

SOIL HORIZON

The soil horizon is characterized as mottled yellowish, brown, orange, and red silty clay and clayey silt. Root structures were common. The soil horizon at the site is formed from the continued weathering and biologic reworking of residuum, and ranges from 2 to 15 feet in thickness, when present. Based on geotechnical laboratory data, the soil horizon consisted of clayey sand (SC), elastic silt (MH), and lean clay (CL) and had a hydraulic conductivity of 2.86 x 10⁻⁷ cm/sec.

RESIDUUM

Residuum is characterized as mottled (black and gray) red and reddish brown sandy silty clay with infrequent quartz gravel and cobbles. Residuum is characteristically fissile, often breaking in horizontal sheets. Residuum generally retains the remnant texture, structure and mineral content of the rock from which it was formed, and ranges from 5 to 15 feet in thickness. Residuum has a Standard Penetration Resistance (N) of less than 100 blows per foot. Based on geotechnical laboratory data, the residuum consisted of lean clay (CL) with hydraulic conductivity ranging from 7.69 x 10⁻⁸ cm/sec to 3.69 x 10⁻⁹ cm/sec.

PARTIALLY WEATHERED ROCK

Partially weathered rock is characterized as mottled (light green and purple) brown, reddish gray, and weak red silty clay and weathered mudstone, which are often fissile. Partially weathered rock generally retains the remnant texture, structure, and mineral content of the rock from which it was formed, and ranges from 5 to 40 feet in thickness. Partially weathered rock has an N-value of 100 blows per foot or greater and can generally be drilled with standard hollow-stem auger drilling technology. Based on geotechnical laboratory data, partially weathered rock consisted of lean clay (CL). Hydraulic conductivity ranged from 2.433 x 10^{-4} cm/sec to 7.154 x 10^{-8} cm/sec, according to slug or recovery test data (for wells screened solely in partially weathered rock).

LAYERED ROCK

Based on rock coring activities conducted near MW-7/MW-7R and visual inspection of the layered rock exposed on the north side of the MW-4 area, layered rock at the site is primarily composed of reddish to light tan gray mudstone, cross-bedded muddy sandstone, and muddy sandy conglomerate (rounded quartz gravel and cobbles). Layered rock generally occurs as horizontally oriented and relatively thin intermittent layers (especially within the upper 15 feet of contacting layered rock) across the site, based on rock coring and the horizontal fissile nature of residuum and partially weathered rock. Layered rock contained horizontal to near vertical fracturing. Large fractures, oriented approximately N 40° to 60° E at 70° northwest, were observed in weathered mudstone to the immediate northeast near MW-8. Rock Quality Designation (RQD) values for the MW-8 area rock core (21-inch recovery) were poor (47.6%). The occurrence of layered rock at the site was generally defined by auger refusal.

1.6.3 Regional Hydrogeology

The occurrence and movement of groundwater in the Piedmont physiographic province are within two separate but interconnected water-bearing zones that typically comprise one aquifer. A shallow water-bearing zone typically occurs within the residuum/saprolite and a deeper zone within the underlying bedrock.

Groundwater in the residuum/saprolite zone occurs in the interstitial pore spaces between the individual sediment grains. Groundwater in this zone generally flows from topographic highs to topographic lows. The occurrence and movement of groundwater in the underlying bedrock zone are controlled by joints and fractures within the bedrock. Groundwater within this deeper zone may occur under confined or semi-confined conditions, depending on the extent of fracturing at the saprolite/bedrock interface. Deeper groundwater movement is typically controlled by the distribution of openings in the bedrock and can be variable.

FSS

2 Groundwater Flow Characteristics

On January 21, 2019, groundwater depth was measured in each well. Depths-to-water ranged from 6.21 feet (MW-6) to 59.56 feet below top of casing (MW-1). Groundwater elevations ranged from 183.28 feet in well BG-2 to 224.89 feet in well MW-6 (**Table 1**). Historic groundwater elevations are shown in **Table 2**. Monitoring well locations are shown on **Figure 3**.

Table 2: Historic Groundwater Elevations

	тос						Groun	dwater Ele	vation						
Well ID	Elev.	Aug-15	Oct-15	Nov-15	Jan-16	Feb-16	Apr-16	Jun-16	Jul-16	Jan-17	Apr-17	Jul-17	Jan-18	Jul-18	Jan-19
BG-1	228.19	216.31	215.70	216.83	218.14	218.94	218.46	218.46	218.74	217.08	216.61	216.76	211.96	215.37	218.50
BG-2	194.23	NG	NG	NG	NG	NG	NG	NG	183.28						
MW-1	280.08	220.04	220.18	220.55	222.03	222.76	221.83	221.83	221.51	220.58	219.72	219.19	217.61	218.03	220.52
MW-2	229.97	191.78	190.20	192.90	197.19	198.82	201.17	201.17	204.62	205.42	201.63	201.58	186.33	195.65	195.61
MW-3	222.56	207.62	208.46	210.29	210.64	212.31	212.36	212.36	204.81	202.35	202.36	203.91	199.53	194.38	199.03
MW-4	217.13	205.53	206.37	206.83	206.98	211.36	208.34	208.34	205.66	203.67	203.30	204.10	202.16	203.43	204.16
MW-5	244.86	232.01	229.66	230.11	230.16	228.69	220.06	220.06	222.96	203.32	221.53	222.60	218.86	221.93	223.86
MW-6	231.1	223.31	223.99	223.97	224.53	224.75	224.13	224.13	224.07	224.54	223.31	223.58	222.14	222.21	224.89
MW-7	231.71	223.45	222.36	222.53	216.11	215.31	215.66	215.65	216.21	215.42	215.59	216.09	215.03	215.97	215.40
MW-7R	242.22	NG	NG	NG	NG	220.92	217.54	220.30	219.82						
MW-8	236.47	199.98	200.58	201.35	200.60	200.55	199.49	199.49	199.82	199.31	199.11	198.98	198.75	198.45	201.85

Notes:

1. NG – Not Gauged; MW-7R installed April 2017 and BG-2 installed December 2018.

2.1.1 Groundwater Flow Direction

Groundwater at the site flows away from the historic northwest to southeast trending topographic ridge that was present prior to mine development by General Shale (**Figure 4**). Groundwater elevations and general flow directions remain consistent with previous background and detection monitoring events.

2.1.2 Hydraulic Conductivity

Horizontal hydraulic conductivity of aquifer materials adjacent to the well screen were estimated through in-situ slug testing during the *Design Hydrogeologic Report* (Buxton, 2016). Results are provided in **Table 3**.

Well ID	Screen Length (ft)	Screened Interval (ft)	Estimated Effective Porosity (%)	Hydraulic Conductivity (K, cm/sec)	Lithologic Unit
BG-1	15	26-41	0.075	7.76E-05	Layered Rock/PWR*
BG-2	10	13-23	NA	NA	Layered Rock/PWR*
MW-1	15	57-72	0.075	4.11E-04	Layered Rock/PWR*
MW-2	15	30-45	0.05	3.41E-06	Layered Rock/PWR*
MW-3	15	25-40	0.05	4.08E-07	PWR
MW-4	10	13-23	0.14	1.41E-04	Residuum/PWR
MW-5	10	34-44	0.075	8.01E-06	PWR
MW-6	15	12-27	0.15	1.10E-04	Residuum/PWR
MW-7	10	5-15	0.15	1.26E-06	Residuum/PWR
MW-8	15	26-36	0.075	1.29E-04	PWR

Table 3: Hydraulic Conductivity

Notes:

1. Hydraulic conductivity values determined by Buxton Environmental, Inc. on September 10, 2015, by conducting rising head slug tests; and solved utilizing the Bouwer-Rice (unconfined slug test) solution with AQTESOLV for Windows Version 4.50 software by Hydrosolv, Inc. (1996-2007).

2. Effective porosity values from geotechnical testing and the literature (McWhorter and Sunada, 1977; Sinhal and Gupta, 2010) where geotechnical data was not available.

3. MW-7R and BG-2 were installed after the Hydrogeologic Report was submitted; MW-7 was utilized for evaluation in lieu of data from MW-7R.

4. * = interpreted lithologic unit based on relative drilling hardness during well installation.

2.1.3 Horizontal Hydraulic Gradients

Horizontal hydraulic gradient is calculated by taking the difference in hydraulic head over the length of the flow path between two wells of similar construction. Hydraulic gradients at the site during this sampling event are depicted in **Table 4**.

Upgradient Well	Downgradient Well	Upgradient Groundwater Elevation (ft)	Downgradient Groundwater Elevation (ft)	Linear Flow Distance (ft)	Hydraulic Gradient
MW-1	MW-2	220.52	195.61	1,543	0.016
MW-5	MW-4	223.86	204.16	1,220	0.002

Notes:

1. Horizontal hydraulic gradients calculated by dividing the difference in hydraulic head between a well pair by the length of the flow path between the well pair. (*i*= dh/dl)

2. All well pairs assumed to be screened in same surficial aquifer unit

3. Horizontal flow path distance calculated by

 $\left(Easting_1 - Easting_2 \right)^2 + (Northing_1 - Northing_2)^2$

4. Top-of-casing elevation and horizontal location for well MW-5 surveyed by Lawrence Surveying of Monroe, NC.

5. Top-of-casing elevations and horizontal locations for wells MW-1 and MW-3 surveyed by McAdams of Durham, NC.

6. Top-of-casing elevation and horizontal location for well MW-2 surveyed by Gregory C. Bewley.

7. Groundwater elevations calculated for depth-to-water measurements recorded on January 21, 2019.

2.1.4 Groundwater Flow Velocity

The average linear velocity, or seepage velocity, of groundwater between wells at the site was calculated using Darcy's Law, as follows:

$$V_S = \frac{Ki}{P_e}$$

Where:

 V_s = seepage velocity K = horizontal hydraulic conductivity i = horizontal hydraulic gradient P_e = effective porosity

Seepage velocities for groundwater were calculated using horizontal hydraulic gradients, as referenced above, average horizontal hydraulic conductivity and estimated effective porosity values from geotechnical testing and from the literature where geotechnical data was not available (Buxton, 2014; Sinhal and Gupta, 2010).

Seepage velocity varies on a well-by-well basis and was calculated between the MW-1/MW-2 and MW-5/MW-4 well pairs, representing the two well pairs that are roughly perpendicular to the direction of groundwater flow. Seepage velocity was calculated at 10.0 feet per year (between MW-1 and MW-2) and 5.2 feet per year (between MW-5 and MW-4) for this sampling event.

3 Sampling Procedures

3.1 Groundwater Sampling Procedures

HDR collected groundwater samples from the monitoring well network between January 21 and 25, 2019. Purging was conducted via low-flow methods and was considered complete when the water table and field parameters had stabilized in accordance with the targets specified below.

- Turbidity (10% for values greater than 5 NTU (if three turbidity values are less than 5 NTU, the values are considered stabilized)
- DO (10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, the values are considered stabilized)
- Specific conductance (3%)
- Temperature (3%)
- pH (± 0.1 unit)
- ORP (± 10 millivolts)

In cases where water level in the well would not stabilize, the well was pumped dry and groundwater samples were collected with disposable bailers upon achieving 80% recharge. Field data sheets are provided in **Appendix A**.

All non-disposable equipment was decontaminated after each use by washing in an Alconox® detergent solution followed by a tap-water rinse. Purge water was discharged to the ground surface adjacent to each well.

Samples were shipped under Chain of Custody (COC) procedures to Pace Analytical Services, LLC (Pace) for analysis. Sample handling and custody were performed according to the EPA Guidance for Field Samplers.

3.2 Surface Water Sampling Procedures

Surface water samples were collected from two locations outside of the structural fill boundary to evaluate potential groundwater to surface water interaction. Surface water sample SW-1 was collected approximately 3,000 feet south of the structural fill boundary along an unnamed tributary of Gulf Creek. Surface water sample SW-2 was collected approximately 3,100 feet west of the structural fill boundary along Shaddox Creek. Prior to sample collection, field parameters (temperature, specific conductance, DO, pH, turbidity, and ORP) were measured with a water quality meter and recorded on field data sheets (**Appendix A**). Approximate surface water sampling locations are shown on **Figure 3**.

3.3 Leachate Sampling Procedures

One leachate sample (Leachate) was collected from the on-site storage holding tanks. The leachate sample is used to evaluate potential on-site leachate impacts. The leachate sample location is shown on **Figures 3** and **5**.

4 Water Quality

Groundwater samples are collected from 11 monitoring wells (MW-1 through MW-8, BG-1, and BG-2) and two surface water locations (SW-1 and SW-2). Groundwater samples are analyzed for constituents listed in NCDEQ Solid Waste Appendix I and II, 40 CFR 257 Appendix III, and 40 CFR 257 Appendix IV.

4.1 Background Site Conditions

Two groundwater sampling events were conducted prior to CCP placement (August and October 2015). The background sampling events consisted of sample collection and analysis from nine monitoring wells (MW-1 through MW-8 and BG-1) and two surface water sample locations (SW-1 and SW-2).

During these initial background monitoring events, chloride, pH, TDS, and vanadium were detected at concentrations that exceeded their North Carolina 2L Groundwater Protection Standards (2L Standard) or Interim Maximum Allowable Concentration (IMAC) in groundwater samples collected from background monitoring well BG-1. Antimony, barium, chloride, chromium, cobalt, pH, TDS, and vanadium were detected at concentrations that exceeded their respective 2L Standards or IMACs in other monitoring wells prior to ash placement. Additional target analytes were detected in the samples from well BG-1 and other wells; however, these concentrations did not exceed applicable standards.

Copper and cobalt concentrations that exceeded their respective NC Surface Water & Wetland Standards (2B Standards) were reported in surface water samples collected during the initial background monitoring events, prior to CCP placement. Additionally, all EPA Appendix III constituents were detected in the surface water samples collected prior to CCP material placement, but at concentrations below their respective 2B Standards (if applicable).

During the first monitoring event (August 2015), bromodichloromethane and dibromochloromethane were detected at concentrations above their respective 2L Standards in groundwater samples collected from MW-2, MW-3, and MW-7. Volatile organic compounds (VOCs), including trihalomethanes, are not present naturally at the site. These detections are attributed to the use of municipal water during previous well development activities. VOCs were not detected above laboratory method detection limits (MDLs) in any subsequent (2nd through 8th) background sampling events.

A detailed discussion of background groundwater conditions can be found in the *2016 Background Sampling Report* (HDR, 2016b). Additional discussion of the statistical results can be found in **Section 4.0** of this report for a better understanding of predictive limits for the background well location (BG-1), as well as interwell interactions.

4.2 Groundwater Analytical Results

Concentrations of the following constituents have exceeded 2L Standards or IMACs in one or more wells: chloride, pH, TDS, barium, chromium, cobalt, and vanadium. EPA Appendix I VOCs were not detected above laboratory method detection limits. Analytical results are presented in

Table 5. Concentration versus time plots generated for three constituents (barium, chloride, and TDS) with the most frequent detections and/or exceedances are included in **Appendix B**.

In general, constituent concentrations varied through the first four to five sampling events (October 2015 through April 2016) before stabilizing for the remainder of the monitoring period. Early variation in concentrations is typical and may reflect seasonal variation because wells were sampled monthly. Once the sampling schedule was revised to a semi-annual basis, constituent concentrations gained consistency and continue as such through the most recent sampling event.

The presence of naturally occurring inorganic constituents above regulatory criteria is common in North Carolina due to various geologic conditions. The presence of naturally occurring metals (i.e., weathering of crystalline parent material) is discussed in more detail in the *Initial Background Groundwater & Surface Water Monitoring Event* (Buxton, 2015c). The laboratory report for the current sampling event is provided in **Appendix C**. Electronic data deliverables (EDDs) are provided in **Appendix D**.

Brickhaven 2019 First Semi-Annual Detection Monitoring Report Table 6: Analytical Detections and Exceedances January 2019

		Pre-ash	2L Standard	/ BTV		Groundwater Analysis							Qua	trol	Surfa	ce Water	Leachate Analysis				
Analyte	CAS Number		IMAC	/ БТV (1Q2019)	BG-1	BG-2	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7R	MW-8	Equip. Blank	•		SW-1	SW-2	2B Standard	LEACHATE
EPA APPENDIX I	III	range			DG-1	00-2	10100-1	10100-2	10100-5	10100-4	10100-5	10100-0		10100-0		пр Ыапк		377-1	577-2	2D Standard	
Boron (µg/l)	7440-42-8	6.01 - 53.10	700	9.26	<2.60	<2.60	<2.60	<u>39.1</u>	<2.60	<2.60	<2.60	<2.60	<2.60	<2.60	<2.60	NT	<2.60	<2.60	<2.60	NE	1,760
Calcium (µg/l)	7440-70-2	16,900 - 185,000	NE	89,600	23,900	89,600	205,000	207,000	<u>194,000</u>	64,300	13,700	34,400	89,100	<u>110,000</u>	<50.00	NT	35,200	2,970	5,230	NE	227,000
Chloride (µg/l)	16887-00-6	2,220, - 1,166,000	250,000	355,000	213,000	218,000	756,000	<u>1,200,000</u>	<u>1,120,000</u>	<u>485,000</u>	22,200	229,000	289,000	<u>377,000</u>	<1.00	NT	228,000	6,900	23,200	250,000	12,500
Fluoride (µg/l)	16984-48-8	<20 - 590	2,000	189	170	160	160	<u>260</u>	<u>420</u>	<u>290</u>	<u>570</u>	<u>400</u>	110	<100	<100	NT	390	<100	<100	1,800	170
pH (standard units)	pН	6.17 - 7.70	6.5-8.5	6.05 - 7.07	6.21	6.83	6.41	<u>7.53</u>	<u>7.13</u>	6.10	<u>7.26</u>	6.23	7.27	6.94	NT	NT	NT	7.39	7.40	6.0-9.0	7.64
Sulfate (µg/I)	14808-79-8	3,700 - 199,000	250,000	64,700	23,200	64,700	8,000	<u>130,000</u>	<u>80,200</u>	12,200	2,900	48,700	18,300	7,900	<0.50	NT	49,300	3,800	7,900	250,000	483,000
Total Dissolved Solids (µg/l)	TDS	296,000 - 2,770,000	500,000	2,630,000	546,000	810,000	1,510,000	2,590,000	2,360,000	1,170,000	261,000	649,000	820,000	814,000	<25.00	NT	649,000	182,000	229,000	500,000	1,110,000
EPA APPENDIX I	IV																				
Antimony (µg/l)	7440-36-0	<3.80 - 12.00	1	3.90	<3.90	<3.90	<3.90	<3.90	<3.90	<3.90	<3.90	<3.90	<3.90	<3.90	<3.90	NT	<3.90	<3.90	<3.90	5.6	<3.90
Arsenic (µg/I)	7440-38-2	<2.50	10	5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	NT	<5.00	<5.00	<5.00	10	18.8
Barium (µg/l)	7440-39-3	117 - 1,240	700	433	278	123	242	360	<u>715</u>	268	123	89.7	255	<u>1,170</u>	<2.50	NT	90.4	85.2	94.2	1,000	73.4
Beryllium (µg/l)	7440-41-7	<0.50	4	0.500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NT	<0.50	<0.50	<0.50	6.5	<0.50
Cadmium (µg/l)	7440-43-9	<0.50	2	0.500	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	NT	<0.50	<0.50	<0.50	2	<0.50
Chromium (µg/I)	7440-47-3	<2.50 - 33.90	10	2.50	<2.50	<2.50	<2.50	<u>14†</u>	<u>179†</u>	<2.50	<2.50	<u>5.3+</u>	<u>6.5†</u>	<2.50	<2.50	NT	5.2	<2.50	5.0	50	<2.50
Cobalt (µg/l)	7440-48-4	<2.50 - 7.00	1	2.50	<2.50	<2.50	<2.50	<2.50	<u>6.2†</u>	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	<2.50	<2.50	3	5.1
Fluoride (µg/I)	16984-48-8	<20 - 590	2,000	189	170	160	160	<u>260</u>	<u>420</u>	<u>290</u>	<u>570</u>	<u>400</u>	110	<0.10	<0.10	NT	390	<0.10	<0.10	1,800	170
Lead (µg/l)	7439-92-1	<2.50 - 6.30	15	2.50	<2.50	<2.50	<2.50	<2.50	<u>7.3†</u>	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	<2.50	5.4	25	<2.50
Lithium (µg/I)	7439-93-2	7.50 - 70.40	NE	42.7	16	12.1	30.9	<u>94.1</u>	<u>72.6</u>	25.4	8	27.9	25.4	21.7	<0.42	NT	28.6	<0.42	<0.42	NE	26.5
Mercury (µg/I)	7439-97-6	<0.10	1	0.100	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	NT	<0.10	<0.10	<0.10	0.012	<0.10
Molybdenum (µg/l)	7439-98-7	<2.50 - 20.60	NE	6.80	<2.50	<2.50	<2.50	<u>7.9</u>	<u>12</u>	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	<2.50	<2.50	160	147
Selenium (µg/l)	7782-49-2	<5.00	20	5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	NT	<5.00	<5.00	<5.00	5	<5.00
Thallium (µg/l)	7440-28-0	<5.00	0.28	13.7	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.12	<0.06	<0.06	NT	<0.06	<0.06	<0.06	0.24	0.47
Radium 226 (pCi/l)	13982-63-3	0.0774 - 0.820	NE	0.800	0	0.236	0.607	<u>1.21</u>	<u>1.92</u>	<u>0.913</u>	0.108	0	0.987	0.743	0.303	NT	0.51	0.458	0.289	NE	0
Radium 228 (pCi/l)	15262-20-1	0.0230 - 1.56	NE	1.29	1.08	1.06	0.737	<u>1.49</u>	<u>2.00</u>	<u>1.35</u>	0.695	0.628	1.01	1.2	0.676	NT	0.757	0.602	0.22	NE	1.06
Combined Radium (pCi/l)	7440-14-4	0.304 - 2.93	NE*	2.09	1.08	1.30	1.34	<u>2.70</u>	<u>3.92</u>	<u>2.26</u>	0.803	0.63	2.00	1.94	0.979	NT	1.27	1.06	0.509	NE	1.06
EPA APPENDIX I ME																				_	
Copper (µg/l)	7440-50-8	<2.50 - 16.40	1,000	2.50	<2.50	<2.50	<2.50	<u>17.2+</u>	<u>36+</u>	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	<2.50	<2.50	/	<2.50
Nickel (µg/l)	7440-02-0	<2.50 - 18.20	100	2.50	<2.50	<2.50	<2.50	<u>9.7+</u>	<u>86+</u>	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	<2.50	<2.50	88	5.4
Silver (µg/l)	7440-22-4	<2.50	20	2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	<2.50	<2.50	0.06	<2.50
Vanadium (µg/l)	7440-62-2	<2.50 - 9.90	0.3	5.50	<2.50	<2.50	<2.50	<u>7.6</u>	<u>13.9</u>	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	9.4	13.1	NE	6.5
Zinc (µg/l)	7440-66-6	<5.00 -106	1,000	10.0	<5.00	<5.00	<u>14.7</u>	<u>31.1</u>	<u>42.7</u>	<u>29.4</u>	<5.00	<u>17.7</u>	<u>10.7</u>	<u>13.6</u>	<5.00	NT	17.5	11.5	14.3	50	<5.00
Acetone (µg/l)	67-64-1	<10.00	6,000	10.0	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<25.0	<6.20	<6.20	<6.20	2.000	<6.20
Bromodichloromethane (µg/l)	75-27-4	<0.18	0.6	0.260	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<0.34	<1.0	<0.34	<0.34	<0.34	NE	<0.34
Bromoform (µg/l)	75-25-2	<0.26	4	0.620	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<0.62	<1.0	<0.62	<0.62	<0.62	4.3	<0.62
Chloroform (µg/l)	67-66-3	<0.14 - 1.80	, 70	2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<5.0	<2.30	<2.30	<2.30	5.6	<2.30
Dibromochloromethane (µg/l)	124-48-1	<0.21	0.4	0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<1.0	<0.41	<0.41	<0.41	NE	<0.41
Carbon Disulfide (µg/l)	75-15-0	<1.20	700	1.20	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<2.0	<0.40	<0.40	<0.40	NE	<0.40
Dibromomethane (µg/l)	74-95-3	<0.21	70	0.460	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<1.0	<0.46	<0.46	<0.46	47	<0.46
1,4-Dichlorobenzene (µg/l)	106-46-7	<0.33	6	0.330	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.40	<0.26	<0.26	<0.26	<1.0	<0.26	<0.26	<0.40	63	<0.26
Notes:	100-10-1	-0.00	v	0.000	-0.20	-0.20	0.20	-0.20	-0.20	-0.20	-0.20	.0.20	-0.20	-0.20	-0.20	1.0	-0.20	-0.20	-0.20	50	-0.20

* = no established 2L Standard. 5 (pCi/l) is the Federal Standard

t= potential SSIs as they are non-detected constituents that had detected values

BTV = background threshold value calculated for January 2019

NE = not established

NT = not tested

VOCs = volatile organic compounds

μg/l = micrograms per liter

pCi/l - picocuries per liter

Shaded = concentration reported above established 2L Standard, IMAC, or 2B Standard

Bold/Underlined = concentration exceeded BTV

2L Standard = North Carolina Groundwater Protection Standard (T15A NCAC 02L .0202)

IMAC = Interim Allowable Maximum Concentration

2B Standard = North Carolina Surface Water and Wetland Standards (15A NCAC 02B) for Gulf Creek (SW-1) a Shaddox Creek (SW-2) which are both Class WS-IV Waters or are National Criteria per EPA pH was field tested

Groundwater, surface water, and leachate samples collected from January 21-25, 2019 and analyzed for above parameters by Pace Analytical Services, LLC

Pre-ash concentration range = range of concentrations taken from MW-1 thru MW-8 and BG-1 during the October 2015 sampling event

4.3 Surface Water Analytical Results

Surface water samples were compared to the North Carolina Water Quality Standards for Surface Waters established under T15A NCAC 02B (2B Standards) or the EPA National Criteria Standard (utilized by the North Carolina Division of Water Quality as default standards for parameters not listed in 15A NCAC 02B). No exceedances of regulatory criteria were reported during the current sampling event.

Note that standards have not been established under T15A NCAC 02B for the following constituents detected: boron, calcium, cobalt, lithium, radium 226, radium 228, vanadium, bromodichloromethane, dibromochloromethane, and carbon disulfide. Laboratory results are presented in **Table 5**.

4.4 Leachate Analytical Results

One sample of leachate generated on-site was collected and analyzed this event. In general, results show a declining trend for EPA Appendix III, Appendix IV, and Appendix I Metal analytes when compared to results from previous events. Leachate sampling is required by the Permit to Operate and is disposed of in compliance with the Clean Water Act at either the City of Sanford's Big Buffalo Creek Wastewater Treatment Plant or the Town of Spring Lake's South Harnett Regional Wastewater Treatment Plant.

5 Statistics

5.1 Methodology

Background groundwater quality was evaluated to establish statistically-derived background concentrations for the site. Groundwater quality in downgradient wells were then compared to background concentrations to determine if a statistically significant increase (SSI) over background has occurred, as required by Section .1600 rules of the North Carolina Solid Waste Management Rules 15A NCAC 13B.

Sampling results used to establish background threshold values (BTVs) were obtained during sixteen monitoring events performed between October 2015 and January 2019. Downgradient sampling results from the detection monitoring round in January 2019 were used to evaluate for SSIs. Software packages ProUCL, NCSS, R and SPSS were used in the production of the statistics (ProUCL is offered by the USEPA; R is a free software environment; NCSS and SPSS are licensed software packages).

Groundwater samples collected as part of the monitoring program were analyzed for EPA Appendix III and Appendix IV constituents, Appendix I Metals, and Appendix I Volatile Organic Compounds (VOCs). Only non-filtered sample results were utilized for the statistical analysis of monitored constituents.

5.1.1 Statistical Analysis

The background sample size (i.e., quantity of qualifying samples) was evaluated per constituent. Descriptive statistics were calculated for the background data set including non-detect (ND) values and excluding ND values. When NDs were included in the data set, the method detection limit (MDL) was substituted as the ND value for simple descriptive statistics. The analysis was performed with NDs removed to better understand the central tendency and range of the detected values. Note that for the trend analyses in **Section 5.1.4** and for the establishment of statistically-derived background concentration levels in Section 5.2, imputation methods using the maximum likelihood method (MLE) for NDs, regression on order statistics (ROS) or Kaplan-Meier (KM) methods, where appropriate, were used.

Following the calculation of descriptive statistics, the statistical analysis for the background data set was performed to evaluate for outliers, data distributions, and trends for Appendix III and IV constituents, Appendix I Metals, and Appendix I VOCs, where data quantity and quality permit. A total of seventeen samples (sixteen monitoring events from BG-1 and one monitoring event from BG-2) were included for the descriptive analysis of the background monitoring well results for the monitored constituents. The first sampling event conducted in August 2015 was not included in the analysis as data obtained during this event were not consistent with data from subsequent rounds; sample analyses for the August 2015 event were performed by a different laboratory, possibly accounting for the disparity in results.

For downgradient monitoring results, the data analysis included the calculation of descriptive statistics for Appendix III and IV constituents, Appendix I Metals, and Appendix I VOCs (for the data sets including and excluding ND values), followed by an evaluation of outliers and trends.

A total of sixteen monitoring events performed between October 2015 and January 2019 were included for the descriptive analysis of the downgradient monitoring well results for the monitored constituents.

5.1.2 Outliers

Outliers are values that are not representative of the population from which they are sampled. The background and downgradient data sets were screened for outliers using the Dixon's outlier test, which is suitable for data sets containing less than 25 samples. The outlier test was conducted using a significance of one percent. For constituents that had NDs, the NDs were removed prior to testing for outliers.

Statistical outliers were identified in the background data set evaluated for three Appendix III constituents (calcium, sulfate, and total dissolved solids) and one Appendix IV constituent (barium). The constituent concentrations identified as statistical outliers were sampled from the newly installed background well BG-2, except for total dissolved solids.

Statistical outliers were identified intermittently for numerous Appendix III and Appendix IV constituents and Appendix I Metals, in the data sets evaluated for downgradient monitoring wells throughout the monitoring period.

The statistical outliers were investigated as possible data entry or measurement errors. The values were all within one order of magnitude of other observations and deemed correct. Given the variable nature of groundwater samples, the small sample sizes and that it is common for groundwater quality samples to have very low or very high concentrations over time, statistical outliers are expected but do not necessarily signify that the outliers are from different distributions. As additional background samples are collected over time, outlier test results may change and earlier observations thought to be outliers may no longer be outliers.

5.1.3 Data Distribution

Groundwater data was fitted to known distribution models using Goodness-of-Fit (GOF) tests incorporated into ProUCL. For data sets comprised of 50 or fewer samples, ProUCL's GOF module incorporates the Shapiro-Wilk GOF test to determine normal or lognormal distribution and Anderson-Darling to determine gamma distribution. Normal, lognormal and gamma distributions are parametric distributions. If a data set could not be fit with any of these three parametric distributions, it was considered to follow a nonparametric distribution.

Note that ProUCL does not provide GOF results for data sets with less than three detected values due to insufficient data. For purposes of estimating background concentrations, these data sets were treated under non-parametric distribution assumptions with the maximum detected value chosen to represent the background concentrations.

5.1.4 Trends

Background constituent concentrations in groundwater should demonstrate stationary conditions through time, free of trends. Constituents were analyzed for trends within the data set using a maximum likelihood estimate (MLE) regression for constituents which followed parametric distributions and Mann-Kendall tests for those that were treated under

nonparametric distributional assumptions. The MLE regression can be applied to data sets that can be fitted to a specific distribution model, and that contain NDs with multiple MDLs. The Mann-Kendall test is suitable for data series with no discernable distributions and only one MDL value for NDs.

Constituents treated under nonparametric data assumptions (either tested as nonparametric or having more than 50 percent NDs) and with multiple MDLs or with less than three detected values were not assessed for trends.

The background well regression analysis showed a potential increasing trend for one Appendix III constituent (fluoride) and a potential decreasing trend for two Appendix III constituents (boron and chloride) and one Appendix IV constituent (barium). There were no increasing or decreasing trends identified for other constituents with sufficient data quantity and quality for testing with the MLE analysis or Mann-Kendall test. Although statistical trends were identified for boron, barium, chloride, and fluoride, the results can be misleading due to the short duration of the sampling program.

Trends were also evaluated for constituents in each downgradient well using the same methods as described above for the background data set. Trends were identified for select constituents at select monitoring well locations and should be monitored as additional downgradient groundwater data are collected at the site (**Section 4.2**).

5.1.5 Spatial Variability

Spatial variability refers to identifying whether or not there are statistically identifiable differences in mean concentrations or variance levels across the well field (i.e., the pooled background data). The results from background wells BG-1 and BG-2 were assessed to determine if it is appropriate to pool the data to calculate background concentrations. Results of sampling from well BG-2 were compared to the BTVs established in 2018 with the BG-1 well concentrations. The majority of the concentrations in BG-2 were below the former BTVs, therefore no evidence of spatial variability was identified. The constituents in BG-2 will be monitored as additional background groundwater data are collected at the site.

5.2 Evaluation for SSIs over Background

Based on the statistical evaluations performed, BTVs were calculated for the detection monitoring program at the site for Appendix III and IV constituents and Appendix I metals. Note that UPLs were not calculated for Appendix I VOCs as all of these constituents were 100 percent non-detects. For constituents that have all ND background values, the maximum MDL is chosen to represent background and the double quantification rule (DQR) is used to evaluate whether or not there is an SSI. The BTV provided for detection monitoring constituents is the statistically-derived background concentration (i.e., upper prediction limit [UPL]), the maximum detected value or the maximum MDL depending on the level of censorship in each of the background samples.

Downgradient sampling results from the detection monitoring round in January 2019 were used to test for SSIs. Downgradient concentrations were compared to BTVs. For constituents that have all ND background values, the DQR is applied; that is, an SSI is registered for the well-

constituent pair if the downgradient concentrations exhibit detects in two consecutive sampling events.

5.3 Statistical Summary

BTVs were calculated using wells BG-1 and BG-2 as the background monitoring wells. However, eight monitoring wells (MW-1 through MW-8) were installed and sampled (October 2015) prior to ash placement, thus representing pre-ash conditions at the site. SSIs were found for six Appendix III constituents (boron, calcium, chloride, fluoride, pH (field), and sulfate), seven Appendix IV constituents (barium, fluoride, lithium, molybdenum, radium-226, radium-228, and total radium), and two Appendix I metals (vanadium and zinc). Three Appendix IV constituents (chromium, cobalt, and lithium) and two Appendix I metals (copper and nickel) were flagged as potential SSIs as they are non-detected constituents that had detected values. If the downgradient concentrations for these constituents exhibit detects in the consecutive sampling event, then an SSI would be registered. When results of the January 2019 sampling event are compared to the pre-ash sampling results from those eight wells, current downgradient groundwater constituent concentrations are generally similar to concentrations reported prior to ash placement. Of the fourteen constituents with observed SSIs, eight are within the range of pre-ash conditions. Depending on the data distribution of the constituent, the BTVs have been computed to allow for one to three verification samples. With verification sampling, the validity of the SSIs can be confirmed. Additional details regarding statistical methodology and results is provided in Appendix E.

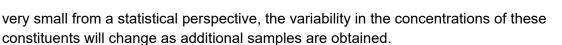
6 Conclusions

The 2019 First Semi-Annual Detection Monitoring Event was conducted at the Brickhaven No. 2 Mine Tract "A" Structural Fill site from January 21-25, 2019. A summary of the findings from is provided below.

6.1 Groundwater

- Concentrations of chloride, pH, TDS, barium, chromium, and vanadium in groundwater samples exceeded the 2L Standards or IMACs during the current sampling event.
- No exceedances were reported for EPA Appendix I VOCs.
- Concentrations of calcium, lithium, molybdenum, and radium 226/radium 228 were detected above the laboratory MDLs; however, standards have not been established by NCDEQ for these constituents.
- Chromium and TDS concentrations in MW-3 have increased over the past two sampling events. Vanadium concentrations in MW-3 increased during this sampling event. Increasing concentrations of chromium and vanadium may be associated with increased TDS.
- Vanadium concentrations in MW-2 have increased during this sampling event.
- Concentrations of chloride and barium, as well as pH measurements, have generally remained consistent with previous sampling events.

6.2 Surface Water


- Vanadium exceeded the 2B Standard in the sample collected from sampling location SW-2.
- No exceedances were reported for EPA Appendix I metals, EPA Appendix III, and EPA Appendix IV constituents.
- Concentrations of calcium, radium 226/radium 228, and vanadium (SW-1 only) were detected above the laboratory MDLs; however, standards have not been established by NCDEQ for these constituents.

6.3 Leachate

• Leachate samples collected during this sampling event generally show a declining trend in concentrations of EPA Appendix III, Appendix IV, and Appendix I Metals.

6.4 Statistical Analysis

- The analysis is based on an interwell analysis consisting of sixteen monitoring events of the background well BG-1 and one monitoring event of the background well BG-2 (nine more than the required eight). Subsequent sampling events could provide greater refinement and confidence of statistical significance.
- Statistical outlier was identified in the background data set evaluated for barium, calcium, sulfate, and TDS. Intermittent statistical outliers for Appendix III and Appendix IV constituents and Appendix I Metals, in the data sets evaluated for downgradient monitoring wells, were noted throughout the monitoring period. As the sample size is

- SSIs were found for six Appendix III constituents (boron, calcium, chloride, fluoride, pH (field), and sulfate), seven Appendix IV constituents (barium, fluoride, lithium, molybdenum, radium-226, radium-228, and total radium), and two Appendix I metals (vanadium and zinc). When results of the January 2019 sampling event are compared to the pre-ash sampling results, current groundwater constituent concentrations are generally similar to concentrations reported prior to ash placement. Of the fourteen constituents with observed SSIs, eight of them are within the range of pre-ash conditions.
- Three Appendix IV constituents (chromium, cobalt, and lithium) and two Appendix I metals (copper and nickel) were flagged as potential SSIs as they are non-detected constituents that had detected values.
- HDR believes that the presence of SSIs is the result of low background concentrations that may not represent data collected prior to CCP placement (August and October 2015 sampling events) and is influenced by natural and seasonal variations at the site. In general, the SSIs reported during this sampling event are either consistent with those evaluated in the Alternate Source Demonstration (ASD) dated March 29, 2019 or are potential SSIs to be verified during the next sampling event.

7 Recommendations

Based on the findings, HDR makes the following recommendations:

- Continue to sample semi-annually, as well as incorporating Chatham County quarterly split sampling data, to improve the dataset for greater statistical confidence and refinement.
- Discontinue sampling for EPA Appendix I VOCs. VOCs have only been detected in MW-2 (October 2015), an ambient blank (July 2016), and an equipment blank (July 2016). VOCs are not typically associated with CCP and continued analysis of VOCs is unlikely to provided new information.
- Evaluate the validity of SSIs by further assessing sampling protocols/performance, spatial variability, and seasonality of constituent concentrations as additional sampling rounds are conducted.
- HDR recommends that the site remain in the Detection Monitoring Program.

8 References

Buxton Environmental. 2015a. *Water Quality Monitoring Plan for Brickhaven No.2 Mine Tract* "A" Structural Fill.

Buxton Environmental. 2015b. Compliance Groundwater Well Installation, Development, Surveying and Hydraulic Conductivity Determination Activities Report for Brickhaven No.2 Mine Tract "A" Structural Fill.

Buxton Environmental. 2015c. *Initial Background Groundwater & Surface Water Monitoring Event*. October 2015.

Buxton Environmental. 2016. Design Hydrogeologic Report for Brickhaven No.2 Mine Tract "A" Structural Fill. Addendum 2, March 2016.

HDR. 2014. *Permit Application for Brickhaven No.2 Mine Tract "A" Structural Fill including Design Hydrogeological Report.*

HDR. 2015. 2015 Semi-Annual Groundwater, Surface Water, and Leachate Sampling Report. December 2015.

HDR. 2016a. 2016 First Semi-Annual Groundwater, Surface Water, and Leachate Sampling Report. May 2016.

HDR. 2016b. Background Sampling Report. November 2016.

HDR. 2017. 2017 Initial Semi-Annual Detection Monitoring Report. January 2017.

HDR. 2017b. 2017 Semi-Annual Detection Monitoring Report. October 2017.

IBM Corp. Released 2013. *IBM SPSS Statistics for Windows, Version 22.0*. Armonk, NY: IBM Corp.

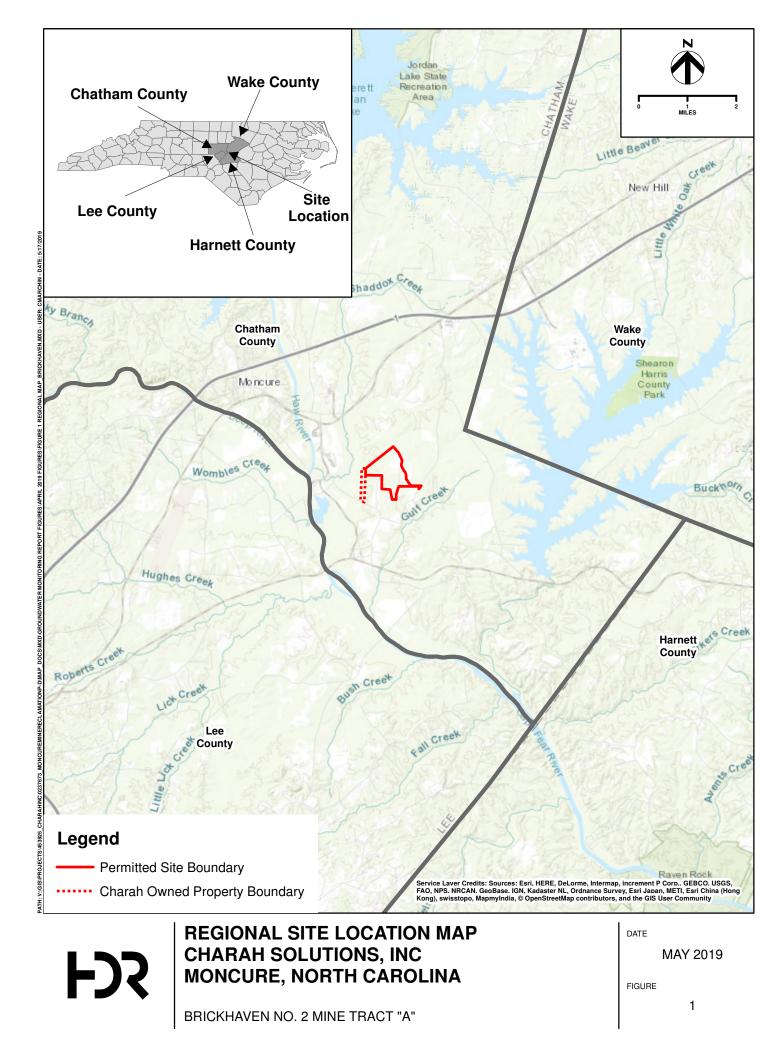
NCSS, LLC. 2013. NCSS 9 Statistical Software. Kaysville, Utah, USA, ncss.com/software/ncss.

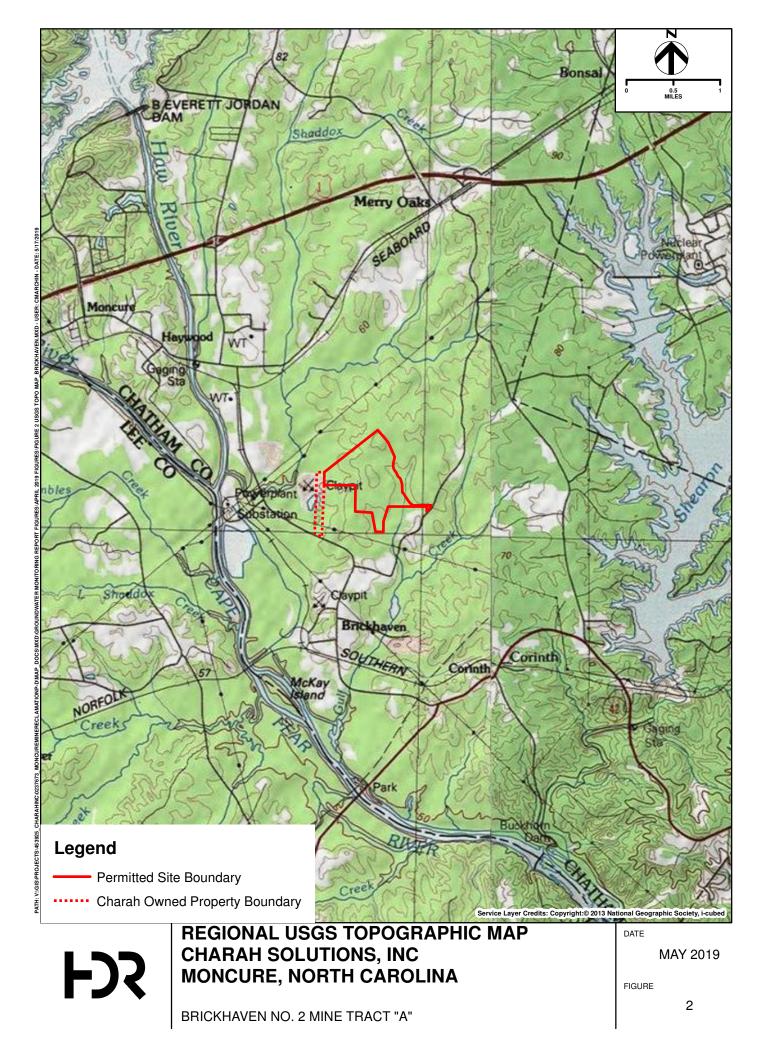
NCDEQ. 2008. Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling.

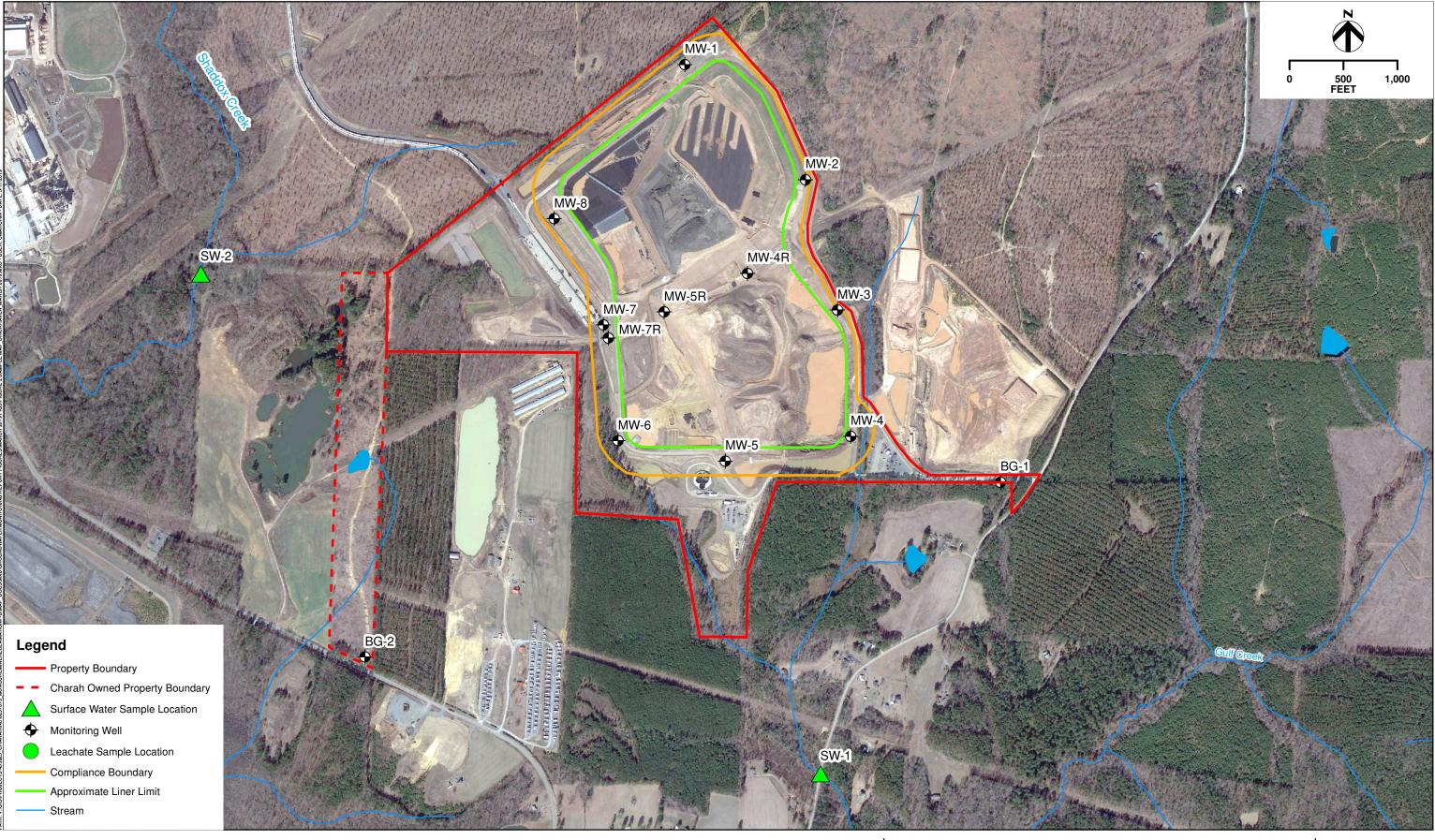
North Carolina Department of Natural Resources and Community Development. 1985. *North Carolina Geologic Map.*

North Carolina General Assembly. *Coal Ash Management Act (CAMA) of 2014 (Senate Bill 729).* Ratified.

R Core Team. 2018. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.

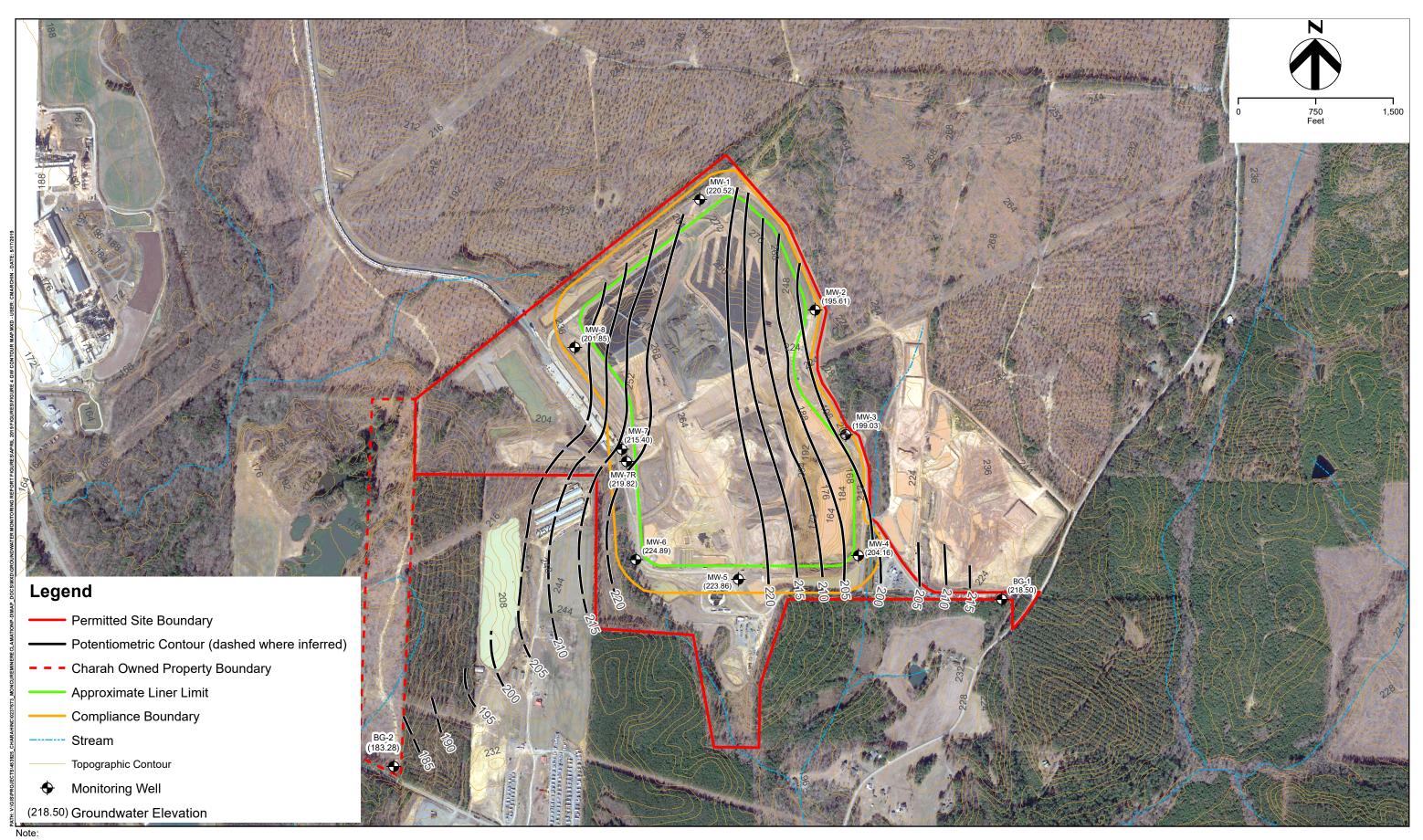

Singh, A. and Ashok Singh. 2015. *ProUCL 5.1.002 Technical Guide Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations.* EPA/600/R07/041.

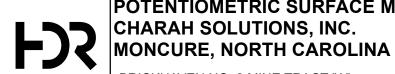

Singhal, B. B.S. and R. P. Gupta. 2010. *Applied Hydrogeology of Fractured Rocks: Springer, 2nd Edition*, 408p. (Table 8-1, p. 140)United States Geological Survey. 2004. *Arsenic, Nitrate, and Chloride in Groundwater, Oakland County, Michigan.*



Figures

Figure 1: Regional Site Location Map Figure 2: Regional USGS Topographic Map Figure 3: Sample Location Map Figure 4: Potentiometric Surface Map – January 2019 Figure 5: Leachate Sample Collection Location



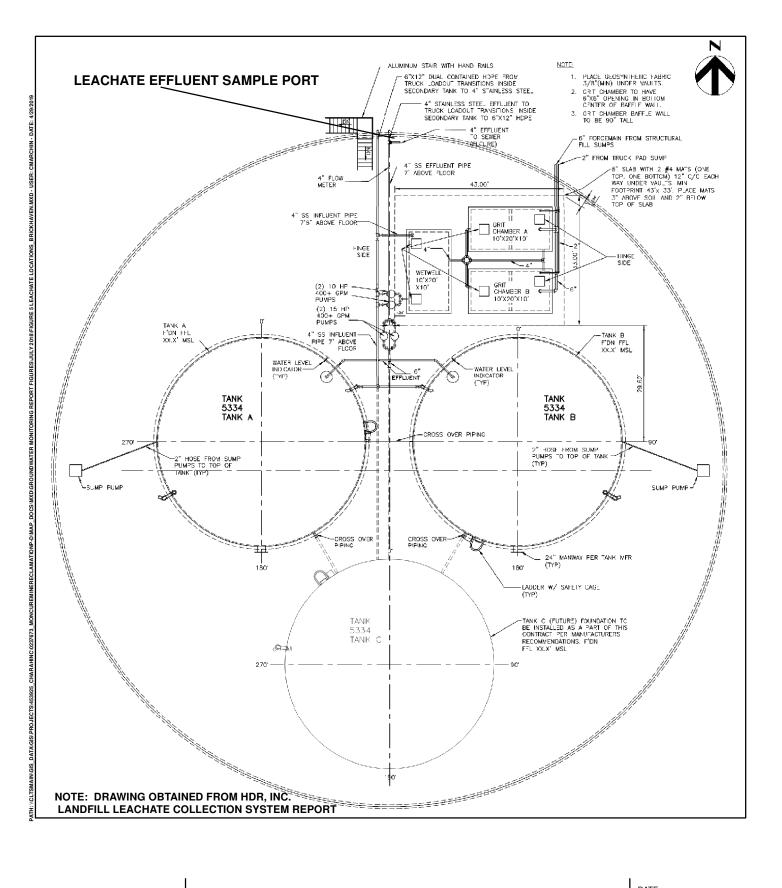

SAMPLE LOCATION MAP CHARAH SOLUTIONS, INC. MONCURE, NORTH CAROLINA

DATE

MAY 2019

FIGURE

BRICKHAVEN NO. 2 MINE TRACT "A"

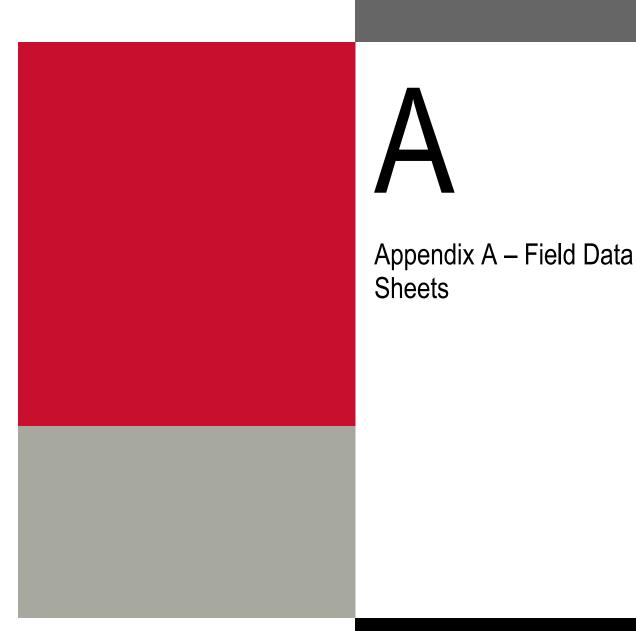

POTENTIOMETRIC SURFACE MAP - JANUARY 2019

DATE

MAY 2019

FIGURE

Groundwater elevations derived from depth to water measurements collected on January 21, 2019.
 Topography data for the site was obtained from NCDOT Geographic Information System (GIS) website (Dated 2007).
 Aerial photography was obtained from Google Earth dated 2018.


MAY 2019

FIGURE

DATE

BRICKHAVEN NO. 2 MINE TRACT "A"

5

GROUNDWATER DEPTH

Project Name:	Charah – Brickhaven	Date:/2.1/ter/19
Project Address:	Moncure, NC	Project No: 237673-019
Time Started:	1000	Time Finished: <u>115 3</u>
Personnel:	J. Ruffing	Signature: Scheller

Well ID	Depth to Water	Total Depth
BG-1	9.69	43,82
BG-2	10.95	26.11
MW-1	59.56	75.60
MW-2	36.15	50.20
MW-3	23.53	43,65
MW-4	12,97	27.75
MW-5	21.00	47.00
MW-6	6.21	27.97
MW-7	16,31	17,66
MW-7R	27.40	40.00
MW-8	34.62	49.76
-		

.

Well ID	Depth to Water	Total Depth			
1					
	· · · · ·				
-					

SITE NAM	E/LOCATIO	DN: Charah	n Brickhave		PROJECT #: 237673-019					
DATE:	/2	2/18				SAMPLER	'S INITIALS	: <u>M</u>		
WELL ID:	BG-1		WELL DIAM	AETER (in):	2		WELL DEP	TH (ft):	43.82	
SCEENED I	_ength (ft):	15			ŝ	DEPTH TO	WATER (ft): 94	75	
PURGE ME	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing	ł	
Sample Ti	me:	10	10		-	Sample Date:				
Stabilization Requirements										
SC - 3% pH ± 0.1 ORP ± 10mV DO - 10% or <0.5mg/L										
	5			PURGE MEA	SUREMENT	S				
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
0900		9.85			-	-	-			
CAOS		13.76	350	15.0	1066	2,60	6.7.5	50.L		
0915		13.40	350	15.0	10-14	1.19	6.25	45.2	160.6	
0970	7,00	13.15	300	15.3	1090	0,86	6.26	21.5	159.0	
0925		13.10	300	15.4	1084	0.73	6.26	18,5	·	
6930		13.20	300	15.9	1076	0.65	6.27	20.5	155.9	
0940		13.20	300	GITISD		0,50	6.20	19.4	159.5	
0950	19	13.05	300	15.1	1054	0,39	6.22	13,2	154,2	
0955		13.10	300	15.3	1045	0.38	6.22	10.1	152.8	
1000		13.08	300	is.s	1035	0.31	6.22	6.23	150.0	
1005	23,5	13.08	300	15.3	1030	0.24	6.21	4.76	147.9	
									·	
		1		/						
		$\rightarrow +$	Th							
			PID 1	Ĺ						
				J						
		1						\sim		

*

SITE NAME/LOCATION: Charah Brickhaven						PROJECT #: 237673-019				
DATE:	1/27	2/19				SAMPLER'S INITIALS:				
WELL ID:	BG-	Z	WELL DIAM	ETER (in):	2	-	WELL DEP	TH (ft): Broc	2 Gu 11	
SCEENED L	_ength (ft):	l	0		,	WELL DEPTH (ft): <u>26</u> Brec DEPTH TO WATER (ft): 10.72				
PURGE ME	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing	{	
Sample Tir	me:		5351	345	e	Sample Da	ite:	1/2	2/19	
			St	abilization	Requireme	nts				
SC - 3%			pH ± 0.1		•	ORP ± 10m	V			
DO - 10% o	r <0.5mg/L		Turb. 10% d	or <5NTU						
				PURGE MEA	SUREMENT	S				
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
1115		1153	200	13.5	1849	1.45	6.78	Ostilling t	38.0	
1125	4	11.83	150	15.2	1659	0.43	6,88	11	-195	
1155		1210	200	15.1	1463	0,23	6.86	32.9	-67.1	
1205		12,40	200	15.3	1423	0.19	6,83	11.0	-76.1	
1210		12.55	200	15.4	1424	0.17	6.89	8.34	-79,2	
1220		12.55	200	14.1	1441	2.18	6.88	20.1	305	
1225		17.55	200	15.0	1437	0.16	6.90	8.49	- 36.3	
1230		12.55	100	15.1	1412	0.15	6.45	7.79	-87,3	
1240		13.05	200	15.9	1445	0.13	6.90	21,1	-91.0	
1230		12,90	200	15.6	1401	0.14	6.87	28.3	-91.9	
1300		12.97	200	15.9	1433	0.13	6.39	31.3	-94.3	
1320		12,90	100	15.7		0.12	6.89	14.0	-100,6	
1325	34	12.75	100	15,1	1411	0.13	6.36	17.8	-100,2	
1505	59	16.75	100	[]][1911	0.15	6.83	17.4	-100.0	
								Sample	9	
			·							
					·					
			·							
10 .1	c ali		adin		11 10				I	

After sampling - sugged i purged will dry twice

SITE NAM	E/LOCATIO	ON: Charah	n Brickhav		PROJECT #: 237673-019				
DATE:	_1/2	4/19	-			SAMPLER	'S INITIALS	SA	2
WELL ID	: Mn	1-1	WELL DIAM	AETER (in):	2	-	WELL DEP	TH (ft):	77.50
SCEENED	Length (ft):		15			DEPTH TO	WATER (ft): 58	62
PURGE ME	THOD:		Low flow		- (a	SAMPLING	METHOD:	Poly tubing	8
Sample Time: 1100					-	Sample Da	ite:	1/2	4/19
			St	abilization	Requireme	nts	_		
SC - 3%			pH ± 0.1	abitization	Requirement	ORP ± 10m	V		
11440	or <0.5mg/L		Turb. 10% (or <5NTU					
					SUREMENT	S			
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)
0930	1	58.62	150	[7.]	9/1	3.35	6.95	819	25.5
0940		58.71	400	17.9	778	1.58	6.96	607	72
6950		58.79	400	18,1	782	0.68	6.90	169	18.3
1000	19	58,91	400	17.8	1450	0.35	6.66	71.5	32.2
1015		58.90	400	17.6	2587	0,41	6.44	22.8	42.7
1025		58.83	400	17.9	2715	0.41	6,42		34.0
1035		545,85	400	18,0	2733	0.40	6.42	12,3	26.6
1045	, j	58,85	400	18.0	2787	0.39	6.41	17.1	21,3
1050	34	54,87	400	18.0	2810	0.38	6.41	11.7	19.7
							-50	mple	
	·								
						_			
		<u></u>							
						~			

SITE NAM	AE/LOCATI	ON: Chara	h Brickhav		PROJECT #: 237673-019						
DATE:	//	22/14	-			SAMPLER'S INITIALS:					
WELL ID	Mh	1-2	WELL DIA	METER (in):	2	-	WELL DEP	TH (ft):			
SCEENED	Length (ft):					DEPTH TO	WATER (ft): 42,9	10		
PURGE ME	THOD:	·	-Low flow	potolourge	elíj	SAMPLING	METHOD:	Poly tubing	- polybai		
Sample Ti	me:	09	340		-	Sample Da	ite:	1/2	<u>s- priybai</u> 3/19		
			St	abilization	Requireme	nts					
SC - 3% DO - 10% o	or <0.5mg/L		pH ± 0.1 Turb. 10%			ORP ± 10m	V				
				PURGE MEA	SUREMENT	S					
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	pН	Turbidity (NTU)	ORP (mV)		
1500	Pura	ed we	11 de	<u></u>							
23/19-		12 0 110									
0830 - w/	bailes	42.40 -	h	ell sec	DUCKED	540	istai	4 Samp	ling		
7455	.5	42.90		15.1	4328	4.43	7.53	634	137.0		
						1					
			-								

MONITORING	WELL	SAMPL	.ING	LOG
------------	------	-------	------	-----

SITE NAM	E/LOCATIO						•	#: 23767	3-019	
DATE:	1/20	+/19	-			SAMPLER	'S INITIALS	<u> </u>	2	
WELL ID	MW	.3		AETER (in):	2	_	WELL DEP	TH (ft):	43.36	
SCEENED I	Length (ft):	1	5	<i>k</i>	-Tr	DEPTH TO WATER (ft): 22.40				
PURGE ME	THOD:		Low flow		-93	SAMPLING	METHOD:	Poly tubing	3	
Sample Ti	me:	1/2 1	5/19		∎ fi	Sample Da	te:	_0840		
			St	abilization	Requiremen	nts				
SC - 3%			pH ± 0.1			ORP ± 10m	V			
DO - 10% o	r <0.5mg/L	2	Turb. 10%	or <5NTU						
				PURGE MEA	SUREMENT	S				
	Liters	Depth to	Flow Rate	Temp	sc	DO		T		
Time	Purged	Water (BTOC ft)	(mL/min)	(C)	uus/cm)	(mg/L)	рН	Turbidity (NTU)	ORP (mV)	
1455	2	24.75	200	17.6	4128	5.65	7.37	OR	68.4	
1500		25.25	300	18.0	4200	4.66	7.27	310	62.0	
1520		32.41	200	18,3	3357	5.58	7.28	18,7	44.3	
1530		3310	100	17.7	34-80	5.24	7.24	12.9	44.0	
1540		434.00		18.1	3690	5.10	7.17	11.3	43:5	
1550		34,55	100	17.7	3795	4.62	7.13	9.15	43.1	
1640	7	42,45			/					
	lost f	-low -	- wate	Pevel	would	nots	tablie	e. Pu.	mord	
	d(y.	10 :00								
Rechal	ige 7	42,18	to	41,18	inn	- 1 hou				
124 0	a.l.c				1 2					
ICT Y	CCharg	p over	night	- San	ple i.	n morn tel Col	lind h	12/1 10	n	
ary a	4+1er "S	emples "	Faken . 1	lot enc	ogh wa	701 401	final	palame	+=1.5	
						· · · · ·				
			· · · · · · · · · · · · · · · · · · ·							

OR = overlange

SITE NAM	E/LOCATI	ON: Charal	n Brickhav	en		PROJECT #: 237673-019				
DATE:	_1/2	2/19	-			SAMPLER	'S INITIALS	<u></u>	1	
WELL ID	Mw-1	4	WELL DIAA	AETER (in):	2	_	WELL DEP	TH (ft):	27.75	
SCEENED I	Length (ft):	·i	0			DEPTH TO WATER (ft): 12.80				
PURGE ME	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing	3	
Sample Time: 1745						Sample Da	te:	2	2/18	
			St	abilization	Requiremen	nts				
SC - 3%			pH ± 0.1			ORP ± 10m	٧			
DO - 10% o	r <0.5mg/L		Turb. 10%	or <5NTU						
				PURGE MEA	SUREMENT	S			W	
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
1535		14,15	400	17,2	2123	2.44	6.43	OR	-40.0	
1550		15.87	900	17.6	2216	0.52	6,02	79.5	-33.7	
1555	19	16.44	500	17.6	2719	0,8Z	6.05	143	-33.4	
1600		16.53	400	17.7	2706	0,46	6.09	76,5	-55.7	
610		16.43	400	17.4	2204	0.31	6.10	79.6	-31.9	
1615		17.13	700	17.9	2224	0.43	6.07	128	-32.3	
1620		17.31	500	18.0	2222	0.34	6.09	147	-30.3	
1625		17.50	500	17.9	2223	0,27	6.09	136	-28,4	
1630	38	17.35	400	18,0	2221	0.17	6.10	104	-24.3	
16 540		17.35	400	17.9	2226	0,15	6.11	71.7	-20.8	
16 45		17.30	375	17.9	2224	0,14	6.11	37.6	-16,6	
1650		17.30	375	17.8	2727	0.13	6,11	35.3	-16.1	
1655		17.02	375	17.5	2224	0.11	6,11	29.4	-16.5	
1700		16.40	375	17.8	2214	0.11	6.11	38.4	-7.3	
1705		16.70	375	17.8	2224	0,10	6.11	21,53	-4.8	
1715		16,43	200	17.5	2227	0.09	6,11	17.2	-2.5	
17-20		16.23	200	17.9	2222	0.09	6.11	15.8	-1.8	
1725		16.31	200	180	2226	0.09	6.12	11.2	-2.1	
1730		16.32	200	17.5	2222	0.11	6.11	11,6	-3.8	
1735		16.20	200	17.5	2726	0,09	6.10	11.8	-1.3	
			and the second				- 5	imple		
								/		
		2)er 1								

OR = over lange

SITE NAM	AE/LOCATIO	ON: Chara	h Brickhav	en	PROJECT #: 237673-019					
DATE:	_1/2	3/19	-			SAMPLER'S INITIALS				
WELL ID	:_MW	-5	WELL DIAA	METER (in)	:2	_	WELL DEI	PTH (ft):	46.14	
SCEENED	Length (ft):		[]		_ .	DEPTH TO WATER (ft): /9. 9/				
PURGE ME	THOD:		tow flow pump dry			SAMPLING	METHOD:	Poly tubin	g bailer	
Sample Ti	me:	045	60		-	Sample Da		1/24	/19	
			St	abilization	Requireme	nts				
SC - 3%			pH ± 0.1	abilization	Requireme	ORP ± 10m	N/			
DO - 10% o	r <0.5mg/L		Turb. 10% d	or <5NTU			1V			
					SUREMENT	S				
	1.14	Depth to								
Time	Liters Purged	Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (µS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
1530	1		300	18.1	467.0	3.18	6.63	213	31.9	
1600		25.00	300	18,3	349.0	0.63	6,44	2/3		
140		31.28	300	18.4	340,1	0.47	6,44	24.6	125	
1615		31.75	300	18.4	347.3	0.40	6.32	15.9	10.3	
1625		35.30	100	17.8	342,7	0.31	6.27	18.9	16.0	
1700		40.50	75	17.8	328.8	0.44	6.37	22,2	12.2	
1705		41.04	75	17,8	348,5	0,33	6.39	21.1	8.4	
1715		41.19	75	18,2	359.5	A 20	151	19.6	-1.3	
1725	36	42.69	75	10010	1 not	get v	Vater In	Evelte		
		Stabi	lize,			V				
		Dai		1 -	7					
01120		Pulde 25.41	well a	ry. h	Vill ch	eck V	tom	to v		
0430	65	1.5.041		- 800	h (eco)	rery				
0 9.50	65			17.6	4637	2,88	7.26	18,6	131,1	
							2			

Diew -

SITE NAM	E/LOCATIO	DN: Charah	Brickhave		PROJECT #: 237673-019				
DATE:	1/23	5/19			SAMPLER'S INITIALS:				
WELL ID:			WELL DIAM	ETER (in):	2	WELL DEPTH (ft): <u>7797</u>			
SCEENED L	DUP ength (ft):		5			DEPTH TO	WATER (ft): 5.6	б
PURGE ME	THOD:		Low flow		-	SAMPLING	METHOD:	Poly tubing	3
Sample Tir	ne:	13	50/0	UP 125	0	Sample Da	te:	_//2 !	3/19
			″ St	abilization	Requiremen	nts			
SC - 3%			pH ± 0.1			ORP ± 10m	V		
DO - 10% o	r <0.5mg/L		Turb. 10% d						
				PURGE MEA	SUREMENT	S			
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рH	Turbidity (NTU)	ORP (mV)
1140									
1145	1	7.06	200	16,4	1391	5.42	6.76	417	79.4
155		6.92	200	15.8	13.56	2113	6.55	143	76.5
1210		6:83	150	15.8	1276	1.43	6.43	91.6	71.1
1220		6.75	100	16.0	1237	1.16	6.37	56.6	66.8
1230		7.00	100	16.3	1224	1.01	6.36	43,1	62.6
1240		7.02	100	16.6	1201	0.80	6.32	28.4	584
1250		7.05	100	16.5	1183	0.68	6.29	22.8	54.4
1300		7.00	100	16.5	1175	0.60	6,26	20.3	50.6
1310		6.96	100	16.3	1165	0.55	6.24	16.5	48,6
1320		6.96	100	16.6	1170	0.51	6.25	15.4	45.2
1325		6.59	100	16.5	1162	0.48	6.23	13.0	44.2
1330		6.40	100	16.7	1157	0,45	6.23	11.9	42.3
1335		6.91	100	16.7	1159	0.45	6.23	11.5	40.0
						- 5	simple		
							/		

SITE NAM	E/LOCATIO	DN: Charat	n Brickhav	en			PROJECT	#: 23767	3-019
	2. C	+ 1 19				SAMPLER	'S INITIALS	:	P
WELL ID:	MW-	7.R	WELL DIAM	AETER (in):	2	_);	WELL DEP	TH (ft):	39.94
SCEENED L	.ength (ft):	·	10			DEPTH TO	WATER (ft): 2/.:	25
PURGE ME	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing	2
Sample Tir	ne:	13	50			Sample Da	ite:	_1/z	4/19
			St	abilization	Requireme	nts		2	
SC - 3% DO - 10% or	< 0.5mg/L		pH ± 0.1 Turb. 10% (ORP ± 10m	V		
				PURGE MEA	SUREMENT	S			
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)
1140	Street Street	21,25							
1155	3	24.48	200	17.7	1528	4.61	731	OR	52,4
1215		26.30	200	18.4	1522	3,16	7.43	577	39.3
1220		27.70		18.5	1515	3.69	7.39	393	37.8
1235		30:95	100	18,2	1512	3.34	7.35	\$2.0	19.5
1245		31.01	100	1801	1516	3./1	7.32	38,8	21.1
1250		31.07	100	18.4	1518	2,86	7.31	31.2	20,7
1255		31.09	160	18.7	1517	2.73	7.32	34.2	18.6
1305		31.13	100	18.8	1520	2.52	7.32	38.5	17.9
1310		31.15	100	18.1	1517	2,46	7.28	33.7	17.7
13175		31,16	100	17.6	1514	2,44	7.24	30,5	20.0
1325		31.16	100	17.2	1519		7.24		
1330		31.17		17.7	15/1	2.42	7.24	26.5	17.5
1340		31.19	75 75	17,4	1509	2.26	7.26	Z2.1 19.7	17,7
1310	Zhr	time	11.14	forp	1301	6,16	7,27	11. T	13.1
~	~ ~	TIME	Imit	to p	J'ge	<	. 110		
						291	nple-		
							ч		
							195		

OR = over range

Dawn

SITE NAM	E/LOCATIO	ON: Charat	n Brickhav	en			PROJECT	#: 23767	3-01 9
DATE:	_//2	3/19	6			SAMPLER	'S INITIALS	: <u>A</u> C	7
WELL ID	MW	1-8	WELL DIAA	AETER (in):	2	-1	WELL DEP	7H (ft):	46
SCEENED	Length (ft):		<u></u>			DEPTH TO	WATER (ft): 核 :	34.90
PURGE ME	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing	8
Sample Ti	me:		50			Sample Da	ite:	_1/2	3/19
			St	abilization	Requiremen	nts			
SC - 3%			pH ± 0.1			ORP ± 10m	V ,		
	r <0.5mg/L		Turb. 10% (or <5NTU					
				PURGE MEA	SUREMENT	S			
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)
0920	0	34.80	· · · · ·						
2945	2	35.45	300	16.9	2977	5,73	6.46	266	
1000		36.01	300	17.5	2520	3.45	6.84	-80	\$ 8.1
1005		36,84.	300	17.5	2206	7,34	6.90	54.5	79.5
1015	19	37.45	500	17.2	1743	1.22	6,94	54.5	63.4
1030		37.04	475	17.5	1442	0.55	6.96	3.62	42.3
1035		37.10	475	17.6	1477	0.53	6.9.5	3.35	39.5
1040		37.08,	475	17.5	1490	0.55	6,94	3.61	38.5
1045		37.08	475	17.6	1494	0.51	6.94	3.8/	35,6
								ample	,
								1	
				· · · · · · · · · · · · · · · · · · ·					

SITE NAM	E/LOCATIO	N: Charah	Brickhave	en			PROJECT	#: 237673	-019
DATE:	1/21/	19				SAMPLER'	S INITIALS		2
WELL ID:	Leachar	re	WELL DIAN	ETER (in):	2		WELL DEP	TH (ft):	
SCEENED L	.ength (ft):	· · · · ·				DEPTH TO	WATER (ft):	
PURGE ME	THOD:		-Low-flow			SAMPLING	METHOD:	Poly tubing	Grab
Sample Ti	ne:	132	C			Sample Da	te:	1/21/1	9 <u>9</u>
			St	abilization	Reauiremer	nts			
SC - 3% DO - 10% o	r <0.5mg/L		pH ± 0.1 Turb. 10% (or <5NTU		ORP ± 10m	V		
			I	PURGE MEA	SUREMENT	S			
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	(C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)
1316	1	3		12.5	1377	7.66	7.64	14.3	124.6
	- Ka								
						1	-		
						ļ			
								1	

SITE NAM	E/LOCATIO	ON: Charah	n Brickhav	en			PROJECT	#: 237673	8-019
	05	/ 19				SAMPLER	S INITIALS	<u>- 40</u>	
WELL ID:	SW-	1	WELL DIAM	AETER (in):	2	- :	WELL DEP	TH (ft):	
SCEENED L	_ength (ft):					DEPTH TO	WATER (ft):	
PURGE ME	THOD:		_Low flow-	Grat	2	SAMPLING	METHOD:	Poly-tubing	- Grat
Sample Tir	me:	1442)			Sample Da	te:	1/21/	/19
			St	abilization	Requireme	nts			
SC - 3% DO - 10% o	r <0.5mg/L		pH ± 0.1 Turb. 10% (ORP ± 10m	V		
				PURGE MEA	SUREMENT	S			
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	(C)	SC (μS/cm)	DO (mg/L)	pН	Turbidity (NTU)	ORP (mV)
1440	·			5.4	62.0	9.14	7.39	163	156.7
									3
·									
		·							
	2.								

_

SITE NAM	E/LOCATIO	DN: Charah	Brickhave	en			PROJECT	#: 237673	-019
	1/2					SAMPLER'	S INITIALS	- 91	2
WELL ID	: SW-	2	WELL DIAN	ETER (in):	2		WELL DEP	TH (ft):	•
SCEENED	Length (ft):	*				DEPTH TO	WATER (ft):	
PURGE ME	THOD:		Low-flow-	NA		SAMPLING	METHOD:	Poly-tubing	Granh
Sample Ti	me:	1400				Sample Da	te:	1/21/1	9
			St	abilization	Requiremen	nts			
SC - 3%			pH ± 0.1			ORP ± 10m	v		
	r <0.5mg/L		Turb. 10% (or <5NTU					
				PURGE MEA	SUREMENT	S			
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)
1400	- and	a superior and a second se	*	5.1	1626	12.45	7.40	271	113
<u> </u>	-								
								1	
								-	
	tat .	<u>.</u>							
							l		
						8			
		l						-	

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section		Section 8							Sect	ion C																			1
	Client Information:	Required Pr	-						Invo	ice Inf	formati	ion:													P	age :	1	Of	2
Company		Report To:	JACO	BRUFFI	NG				Atter		_		_				_				_								
Address:		Copy To:							_	pany l	Name:			-	_		_	_	_		_	-							
Email:), CHARLOTTE, NC 28202	Purchase Or	der#		_			_	Addr	ess: Quote	A.				_					_	_	-		13-X3	25.20	Regula	atory Agen	су	19/6 JB/
Phone:	Fax:	Project Nam		Charah B	rickhaven						ect Man	ager	ke	avin h	erring	Mna	Pelah	e com				+	12.40	154	disconcises	Ctot	e / Location	Martin Charles of	Mentersker -
Requeste	ed Due Date:	Project #:							_	Profil		7672-			erning	(appar	- Ciabl	3,0011				-	100 A. (100)	Couline	Solieste	Juit	NC	1000 Percent	ADDDDDDDDDDD
				_				_								画傳	消除	Re	ques	ted A	nalys	is Filt	ered	(Y/N) -	14 M	些 後	25 28	Est Hist	100 - 51
	MATRIX Drinking \ Water Waste W	WT	1810	(B C=COMP)	COLL	ECTED		COLLECTION			Pr	eserva	ative	s	Τ	YIN									\square				
	SAMPLEID Soli/Solid One Character per box. Wije	P SL OL WP AR		-	START	E		14	AINERS	bei						Analyses Test	List	504, F	S	26/228	F	¥				Residual Chlorine (Y/N)			
ITEM #	Sample Ids must be unique Tissue	OT TS	_	SAMPLE TYPE SAMPLE TYPE		DATE	TIME	SAMPLE TEMP	# OF CONTAINERS	Unpreserved	HN03	HCI		Methanol	Other	Analy	8260 Full List	300.0-CI, SO4,	2540C TDS	6010/7470	6020-B, Li, TI	Trip BLANK				Residual (
	Trip Blank		1 C	a 1/21/	19 1300	-			2			2									1	X		_		_			
2	Lausnate		10	2 1/11	14 1320	~~~			9	2	4	3					X	X	×	XX	X								
3	SW-Z	3	ΠΠ	1/21	14 1400		_		7	2	4	3				11	×	X	X		X				П				
4	5-1-1		Ш	1/21	1A 1400		-		7	Z	4		T			11	X	x	x		X	\square			\square				
5	$\mathbb{R}/n-1$		Π	1/23	19 1010	-			9	2	4	3	1		1		X	X	x,	< x	X				\top				
6	RG-7			1/22/	1				-	7.	4		1				X	X	< b		X		-		\square				
7	Mil-4		HH	1/22	14 1745			Π		z	4	3	╈	T	T		×	x	x	хx	X				\square				
8	MW-Z		ΗII	1/23	14 0 340		-			z	4	3	+		1		X		×	< x	k	Ħ			\square				
9	MW-4		ΠΠ	1/23	19 1100				9	2	4	Z	2	i y			X	X	X)	XX	K				\square				
10	MW-6		m	1/23	119 1350		-	\square		2	4	3					×	X		< ×	X		+		\square				
11	DUP		Π	1/23	14 1250	-			9	2	4	3	1		1	11	×	×	X	XX	X	\square	1		\mathbf{T}				v
12	Mw-5		I.	-1/24	190350	~	_		9	2	4	3					X	×	X	XX	X	\square			\square				
	ADDITIONAL COMMENTS		RELINQ	UISHED B	YAFFILIATIO	ON CON	DATE		Long the	пме	and the second second	a sea a	AC	CEPT	ED B	(AFI	ILIAT	TON				DATE	14 I	TIM	Esta		SAMPLE	CONDITION	S and the
		1	1	1/2	·HA	R	1/2	14	12	200	1	Zn	1	/	1	1	D				1.	75-,	19	170	20				
		1	7	0			25						~																
					Second	RAVELOW		100.5	and the second se	201.2	Lengine -	200	Contract of	12.00	Color Mark		the loss					-	Hall Market	AND	10000			-	
					100401040300	R NAME		Carrie Se	JRE	日本の		たでは					1	636			1		1	and the second		U	5		
						NATURE				_	_		_	_				ATE	Cl-	a di		_		_	_	TEMP In (Received Ice (Y/N)	Custody Sealed Cooler	Samples Intact (Y/N)
					316	MAIURE	OI SAMP	LER:									Ľ	DATE	Sign	eu:						Ē	3 g &	Co Sea	S and a large

Pace Analytical	Chair	n-of-Custor	ly is a LEGA	L DOCUMEI	NT - Com	plete all rele	vent field	ds		ise.						M	TJL Log	-in Nun	nber He	ere
^{mpany:} HDR	E)		Billing In	formation:					200				A	LL SH	IAD	ËD A	REA	S are	for	LAB USE ONLY
dress: 440 S Church	S+										0	ontain		servati	And the second second second	and the second s	Since	Column 1	Contraction of the	Ject Manager:
port To: Jacob RA	Find		Email To	1ª coh	afe	EV ha	les a d	6.00		Preserv	vative T	ypes: (1	1) nitrio	c acid, (i	2) sulfu	ric acid	. (3) hyd	Irochlori	c acid U	A) seedlines huderwide, (c)
у То:	-		Site Colle	ection Info/	Address:	ryChd	11/16	Corp	- 107	meenia	100,177	JOUIUIII	יוושכוע ו	ate, (8) ISP, (U)	soaium	ι τηιοςμ	itate 19	l) heyane	e, (A) asc	corbic acid, (B) ammonium sulfate,
tomer Project Name/Number: Charah Bric	Khaven		State:	County/C		Time Zone ([] PT [] N			-		and the			alyses		T				file/Line: Sample Receipt Checklist:
ne: il:	Site/Facility I	D #:		7 .0.10		ance Monito	ring?												Custo	ody Seals Present/Intact Y N NA ody Signatures Present Y N NA ector Signature Present Y N NA
ected By (print):	Purchase Oro Quote #:	ler #:			DW PW DW Loc	/S ID #: ation Code:								distant and and and					Bott. Corre	les Intact Y N NA ect Bottles Y N NA
ected By (signature):	Turnaround [Date Requir	ed:		Immedi Ves	ately Packed				4, 7		00					and a second	Constant of	Sampl VOA -	lczent Volume Y N NA les Received on Ice Y N NA Headspace Acceptable Y N NA Regulated Soils Y N NA
ple Disposal: ispose as appropriate [] Return rchive: old:	[] 2 Day	ame Day [] 3 Day Expedite Cha		ay []5 Day	Field Fil	tered (if app	licable):		1 6:54	1 ຄ.	TOS	26/22	2	L', TI					Sampl Resid C1 St Sampl	dual Chlorine Present Y N NA dual Chlorine Present Y N NA Trips: Le pH Acceptable Y N NA rrips:
ntrix Codes (Insert in Matrix bo nduct (P), Soil/Solid (SL), Oil (O	x below): Drinl L), Wipe (WP),	king Water Air (AR), Ti	(DW), Grou ssue (TS), E	und Water (lioassay (B),	GW), Wa , Vapor (\	stewater (W /), Other (OT	/w),)		Ell	10	1-2	5	0242	ß				10000	Sulfi Lead	ide Present Y N NA Acetate Strips:
omer Sample ID	Matrix *	Comp / Grab	Compo	ited (or site Start)		posite End	Res Cl	# of Ctns	8260	300,	540	Radie	6010	6020				1000		JSE ONLY: Sample # / Comments:
MW-1	GW	Grab	Date	Time 1100	Date	Time	-	9	X	M	2	X X	CINCLES	X		-				
MW-7R	GW	Grab	17 11	1350				9	X	X	X	X	XX	$\hat{\mathbf{x}}$			1.1			
riw-s	GW	Gkh.		0840				4	ブ	×	×	×	×	x			Sec	100 M		Charles Statements - Party
quip Blunk	GW/	Errah	1/25/19	0408U 11:50				9	×	×	×	×	×	×				Contraction of the		
								-										100		
G.																				
mer Remarks / Special Conditi	ons / Possible I	lazards:	Type of Ice	Used:	Wet	Blue Dr	y No	one	1.04	SHO	RT HO	LDS PR	ESEN	T (<72	hours)	: Y	N	N/A		Lab Sample Temperature Info:
			Packing M	aterial Usec	1:						Frackir									Temp Blank Received: Y N N. Therm ID#:
uished bu/Company /Single				and the second second	15.0.0	<500 cpm):		12/1133-24-18-1			eles re EDEX	ceived UP		Client	Co	ourier	Pac	e Couri	ler	Cooler 1 Temp Upon Receipt: Cooler 1 Therm Corr. Factor: Cooler 1 Corrected Temp:
uished by/Company: (Signatur	0 K		/Time: \$19 2	• • >	Received	by/Company	: (Signat	ure)		ľ	Date/T		10	3	Table	e#:	LABU	SE ONL	Ŷ	Comments:
uished by/Company: (Signatur uished by/Company: (Signatur			/Time:	R	eceived l	oy/Company				ľ	Date/T		1.00		Acctr Temp Prelo	olate:				Trip Blank Received: Y N N/ HCL MeOH TSP Other
uisned by/company: (Signatur	e)	Date	Time:	R	eceived b	y/Company	(Signatu	ure)		C	Date/T	ime:			PM:					Non Conformance(s): Page:

	PROJECT NAME:	Charal	n Mono 1146		Brickha)G	BORING NO.: BG-2 SHEET 1 OF 1
PROJECT LOCATION				TART D	ATE)ec 20 [.]	19	COMPLETION DATE 26 Dec 2018
HastIngs, NE			С	OMPLE	TED DE		10	GROUNDWATER DEPTH
DRILLING CONTRACTOR Geologic Exploration	DRILLER Jacob Messik						WELL CC	INSTRUCTION
DRILLING EQUIPMENT D50	BORING DIAMETER 6.25"		T		D DIAM CH 40		OF WELL CASING	3
DRILLING METHOD Hollow Stem Auger 🔀 Han	d Auger Geopro	be [_OT SIZ 0.02				FILTER MATERIAL GP#2 Sand
LOGGED BY J. Ruffing	BACKFILL MATERIAL Portland Cement		W	ELL DE	PTH			PERFORATED INTERVAL 13 - 23'
DESCRIPT	ION	BLOW COUNTS	DEPTH (FEET)	SAMPLE	UCSC SOIL TYPE	ПТНОГОСУ	WELL	REMARKS
ML, clayey silt, brown (10 YR $\frac{5}{3}$), soft, non roots, grass	-plastic, dry, organics - tree		-		CL			
CL, clay, brownish yellow (10 YR $\frac{6}{6}$), stiff,	medium to high plasticity, dry			-				
CL, clay,very dark grayish brown (10 YR some organics), very stiff, high plasticity, dry,		 5	-				
CL, clay, brownish yellow (10 YR $\frac{6}{6}$), medi	um stiff, medium plasticity, dry	3,3,4		-				
ML, silt, gray (10 YR ⁵), stiff, non-plastic, o	łry	2,4,5						
some iron staining, hard		14, 5 02	-15					
		50 3						Well Construction Grout: 0-9' Bentonite: 9-10.5' Sand: 10.5-25' Screen: 13-23'
Rock/partially weathered rock, very dark of hard, dry	greenish gray (gley 1 ³), very	40, 5 0 3	-25		SM			Auger refusal at 25'

UMCADAMS

Brickhaven No.2 Mine Tract Monitoring Well Location

Description	Northing	Easting	Top Concrete Elev.	Top Well Casing
MW-XX	669278.987	1990476.103	191.405'	194.233'

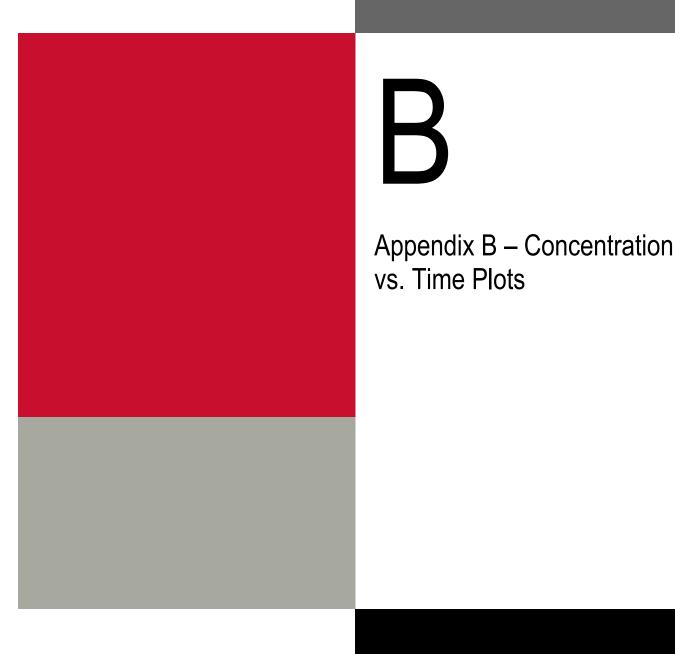
Notes: -Well observations were taken on 02/26/2019 -Bearings for this survey are based on NAD 83 -Elevations for this survey are based on NAVD 88

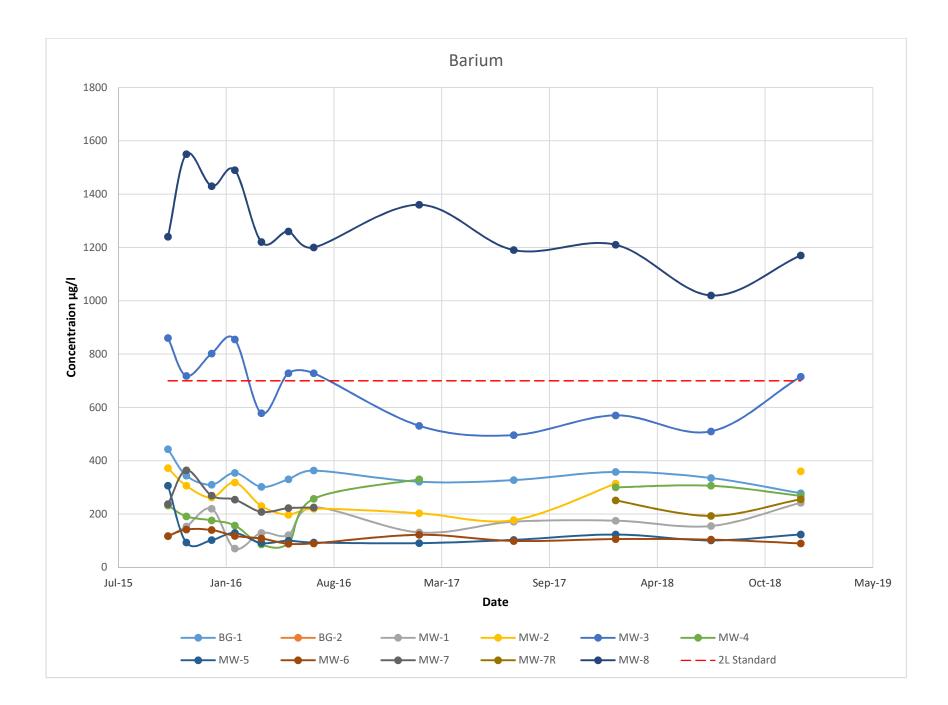
The John R. McAdams Company, Inc.

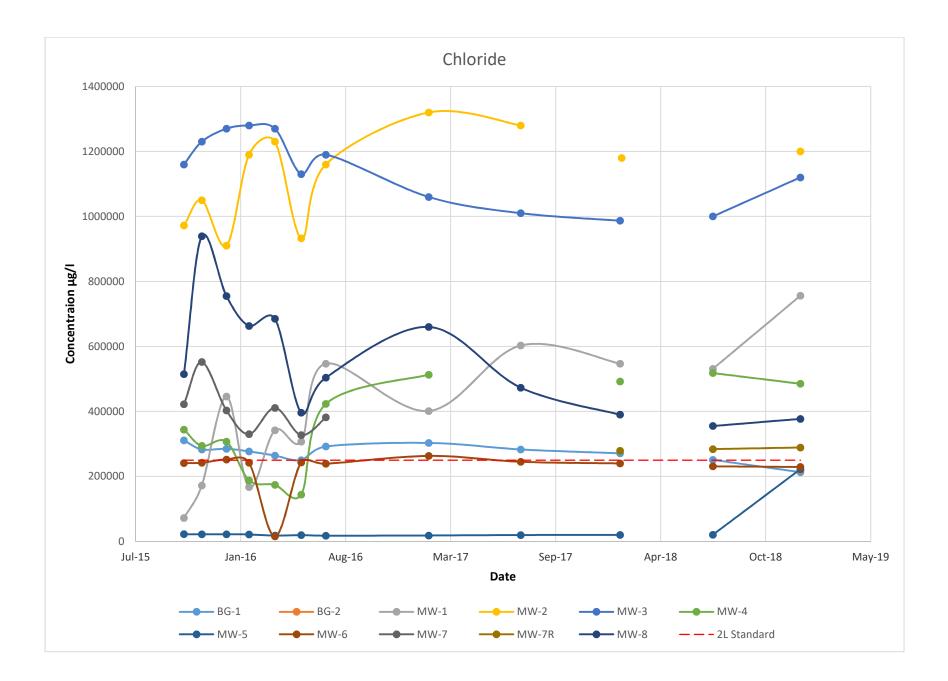
Raleigh / Durham, NC

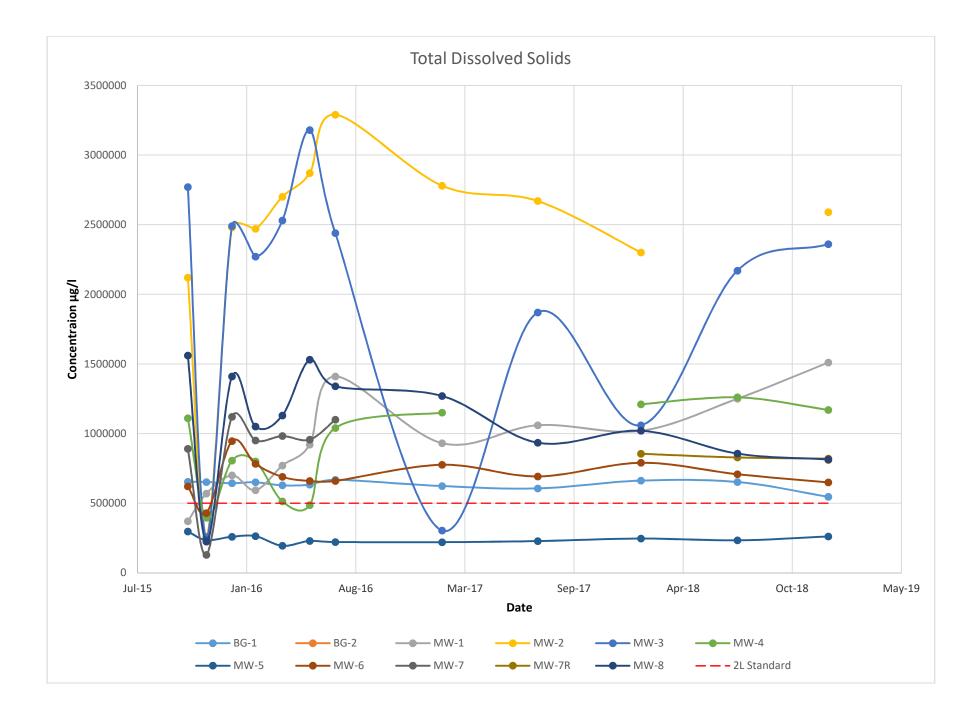
2905 Meridian Parkway Durham, North Carolina 27713 (919) 361-5000

Charlotte, NC


3436 Toringdon Way Suite 110 Charlotte, North Carolina 28277 (704) 527-0800


McAdamsCo.com




Designing Tomorrow's Infrastructure & Communities

Appendix C – Laboratory Reports, Chains of Custody, & Quality Control Data

FS

February 15, 2019

Mark Filardi HDR 440 S. Church St Suite 900 Charlotte, NC 28202

RE: Project: CHARAH BRICKHAVEN Pace Project No.: 92415385

Dear Mark Filardi:

Enclosed are the analytical results for sample(s) received by the laboratory on January 25, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Hung

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Mike Plummer, HDR

CERTIFICATIONS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030 North Carolina Drinking Water Certification #: 37712 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

SAMPLE SUMMARY

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92415385001	TRIP BLANK	Water	01/21/19 13:00	01/25/19 12:00
92415385002	LEACHATE	Water	01/21/19 13:20	01/25/19 12:00
92415385003	SW-2	Water	01/21/19 14:00	01/25/19 12:00
92415385004	SW-1	Water	01/21/19 14:00	01/25/19 12:00
92415385005	BG-1	Water	01/22/19 10:10	01/25/19 12:00
92415385006	BG-2	Water	01/22/19 13:45	01/25/19 12:00
92415385007	MW-4	Water	01/22/19 17:45	01/25/19 12:00
92415385008	MW-2	Water	01/23/19 08:40	01/25/19 12:00
92415385009	MW-8	Water	01/23/19 11:00	01/25/19 12:00
92415385010	MW-6	Water	01/23/19 13:50	01/25/19 12:00
92415385011	DUP	Water	01/23/19 12:50	01/25/19 12:00
92415385012	MW-5	Water	01/24/19 08:50	01/25/19 12:00
92415385013	MW-1	Water	01/24/19 11:00	01/25/19 12:00
92415385014	MW-7R	Water	01/24/19 13:50	01/25/19 12:00
92415385015	MW-3	Water	01/25/19 08:40	01/25/19 12:00
92415385016	EQUIP BLANK	Water	01/25/19 11:50	01/25/19 12:00

SAMPLE ANALYTE COUNT

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92415385001	TRIP BLANK	EPA 8260B	CL	48	PASI-C
92415385002	LEACHATE	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2415385003	SW-2	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2415385004	SW-1	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2415385005	BG-1	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A

SAMPLE ANALYTE COUNT

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92415385006	BG-2	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2415385007	MW-4	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2415385008	MW-2	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2415385009	MW-8	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
2415385010	MW-6	EPA 6010D	DS	16	PASI-A

SAMPLE ANALYTE COUNT

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92415385011	DUP	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CEH	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92415385012	MW-5	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CRV	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92415385013	MW-1	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A
		EPA 7470A	RDT	1	PASI-A
		EPA 8260B	CL	48	PASI-C
		EPA 903.1	KAC	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	CRV	1	PASI-A
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A
92415385014	MW-7R	EPA 6010D	DS	16	PASI-A
		EPA 6020B	JMW1	3	PASI-A

SAMPLE ANALYTE COUNT

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	
		EPA 7470A	RDT	1	PASI-A	
		EPA 8260B	CL	48	PASI-C	
		EPA 903.1	KAC	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
		SM 2540C-2011	CRV	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A	
92415385015	MW-3	EPA 6010D	DS, SH1	16	PASI-A	
		EPA 6020B	JMW1	3	PASI-A	
		EPA 7470A	RDT	1	PASI-A	
		EPA 8260B	CL	48	PASI-C	
		EPA 903.1	KAC	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
		SM 2540C-2011	MVC	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A	
92415385016	EQUIP BLANK	EPA 6010D	DS	16	PASI-A	
		EPA 6020B	JMW1	3	PASI-A	
		EPA 7470A	RDT	1	PASI-A	
		EPA 8260B	CL	48	PASI-C	
		EPA 903.1	KAC	1	PASI-PA	
		EPA 904.0	VAL	1	PASI-PA	
		Total Radium Calculation	CMC	1	PASI-PA	
		SM 2540C-2011	MVC	1	PASI-A	
		EPA 300.0 Rev 2.1 1993	CDC	3	PASI-A	

SUMMARY OF DETECTION

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92415385002	LEACHATE					
EPA 6010D	Barium	73.4	ug/L	5.0	01/27/19 23:31	
EPA 6010D	Calcium	227000	ug/L	1000	01/28/19 23:12	M6
EPA 6010D	Molybdenum	147	ug/L	5.0	01/27/19 23:31	
EPA 6010D	Nickel	5.4	ug/L	5.0	01/27/19 23:31	
EPA 6010D	Vanadium	6.5	ug/L	5.0	01/27/19 23:31	
EPA 6020B	Boron	1760	ug/L	250	01/29/19 11:58	M6
EPA 6020B	Lithium	26.5	ug/L	2.5	01/28/19 20:57	
EPA 6020B	Thallium	0.47	ug/L	0.10	01/28/19 20:57	
EPA 903.1	Radium-226	0.000 ± 0.359 (0.759) C:NA T:87%	pCi/L		02/07/19 20:27	
EPA 904.0	Radium-228	1.06 ± 0.408 (0.624) C:97% T:83%	pCi/L		02/05/19 16:03	
Total Radium Calculation	Total Radium	1.06 ± 0.767 (1.38)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	1110	mg/L	50.0	01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	12.5	mg/L	1.0	01/30/19 23:35	
EPA 300.0 Rev 2.1 1993	Fluoride	0.17	mg/L	0.10	01/30/19 23:35	
EPA 300.0 Rev 2.1 1993	Sulfate	483	mg/L	10.0	01/31/19 09:59	
92415385003	SW-2					
EPA 6010D	Barium	94.2	ug/L	5.0	01/27/19 23:57	
EPA 6010D	Calcium	5230	ug/L	100	01/27/19 23:57	
EPA 6010D	Chromium	5.0	ug/L	5.0	01/27/19 23:57	
EPA 6010D	Copper	5.5	ug/L	5.0	01/27/19 23:57	
EPA 6010D	Lead	5.4	ug/L	5.0	01/27/19 23:57	
EPA 6010D	Vanadium	13.1	ug/L	5.0	01/27/19 23:57	
EPA 6010D	Zinc	14.3	ug/L	10.0	01/27/19 23:57	
EPA 903.1	Radium-226	0.289 ± 0.496 (0.869) C:NA T:86%	pCi/L		02/07/19 20:27	
EPA 904.0	Radium-228	0.220 ± 1.84 (4.24) C:74% T:29%	pCi/L		02/07/19 14:04	
Total Radium Calculation	Total Radium	0.509 ± 2.34 (5.11)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	229	mg/L	25.0	01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	23.2	mg/L	1.0	01/30/19 23:51	
EPA 300.0 Rev 2.1 1993	Sulfate	7.9	mg/L	1.0	01/30/19 23:51	
92415385004	SW-1					
EPA 6010D	Barium	85.2	ug/L	5.0	01/28/19 00:00	
EPA 6010D	Calcium	2970	ug/L	100	01/28/19 00:00	
EPA 6010D	Vanadium	9.4	ug/L	5.0	01/28/19 00:00	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92415385004	SW-1					
EPA 6010D	Zinc	11.5	ug/L	10.0	01/28/19 00:00	
EPA 903.1	Radium-226	0.458 ±	pČi/L		02/07/19 20:27	
		0.499	·			
		(0.785)				
EPA 904.0	Radium-228	C:NA T:86% 0.602 ±	pCi/L		02/05/19 16:03	
EFA 904.0	Radium-228	0.352	poi/L		02/03/19 10.03	
		(0.652)				
		C:95%				
Total Dadium Calculation	Total Dadium	T:81% 1.06 ±	~C://		02/02/10 12:45	
Total Radium Calculation	Total Radium	0.851	pCi/L		02/08/19 12:45	
		(1.44)				
SM 2540C-2011	Total Dissolved Solids	182	mg/L	25.0	01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	6.9	mg/L	1.0	01/31/19 00:08	
EPA 300.0 Rev 2.1 1993	Sulfate	3.8	mg/L	1.0	01/31/19 00:08	
92415385005	BG-1					
EPA 6010D	Barium	278	ug/L	5.0	01/28/19 00:03	
EPA 6010D	Calcium	23900	ug/L	100	01/28/19 00:03	
EPA 6020B	Lithium	16.0	ug/L	2.5	01/28/19 21:20	
EPA 903.1	Radium-226	0.000 ±	pCi/L		02/07/19 20:27	
		0.321				
		(0.678) C:NA T:92%				
EPA 904.0	Radium-228	1.08 ±	pCi/L		02/05/19 16:03	
		0.403	P =			
		(0.608)				
		C:96% T:87%				
Total Radium Calculation	Total Radium	1.07 // 1.08 ±	pCi/L		02/08/19 12:45	
		0.724	P0#2		02/00/10 12:10	
		(1.29)				
SM 2540C-2011	Total Dissolved Solids	546	mg/L		01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	213	mg/L		01/31/19 10:15	
EPA 300.0 Rev 2.1 1993	Fluoride	0.17	mg/L		01/31/19 00:24	
EPA 300.0 Rev 2.1 1993	Sulfate	23.2	mg/L	1.0	01/31/19 00:24	
92415385006	BG-2					
EPA 6010D	Barium	123	ug/L		01/28/19 00:06	
EPA 6010D	Calcium	89600	ug/L		01/28/19 00:06	
EPA 6020B	Lithium	12.1	ug/L	2.5	01/28/19 21:24	
EPA 903.1	Radium-226	0.236 ± 0.401	pCi/L		02/07/19 20:27	
		(0.708)				
		C:NA T:88%				
EPA 904.0	Radium-228	1.06 ±	pCi/L		02/05/19 16:04	
		0.418				
		(0.649) C:94%				
		T:82%				
Total Radium Calculation	Total Radium	1.30 ±	pCi/L		02/08/19 12:45	
		0.819				
		(1.36)				

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92415385006						
SM 2540C-2011	Total Dissolved Solids	810	mg/L	50.0	01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	218	mg/L	5.0	01/31/19 10:31	
EPA 300.0 Rev 2.1 1993	Fluoride	0.16	mg/L	0.10	01/31/19 00:41	
EPA 300.0 Rev 2.1 1993	Sulfate	64.7	mg/L	1.0	01/31/19 00:41	
92415385007	MW-4					
EPA 6010D	Barium	268	ug/L	5.0	01/28/19 00:09	
EPA 6010D	Calcium	64300	ug/L	100	01/28/19 00:09	
EPA 6010D	Zinc	29.4	ug/L	10.0	01/28/19 00:09	
EPA 6020B	Lithium	25.4	ug/L	2.5	01/28/19 21:27	
EPA 903.1	Radium-226	0.913 ± 0.558 (0.685)	pCi/L		02/07/19 20:42	
		C:NA T:87%				
EPA 904.0	Radium-228	1.35 ± 0.429 (0.538) C:95% T:85%	pCi/L		02/05/19 16:04	
Total Radium Calculation	Total Radium	2.26 ± 0.987 (1.22)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	`117Ó	mg/L	50.0	01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	485	mg/L	10.0	01/31/19 10:48	
EPA 300.0 Rev 2.1 1993	Fluoride	0.29	mg/L	0.10	01/31/19 00:57	
EPA 300.0 Rev 2.1 1993	Sulfate	12.2	mg/L	1.0	01/31/19 00:57	
92415385008	MW-2					
EPA 6010D	Barium	360	ug/L	5.0	01/28/19 00:12	
EPA 6010D	Calcium	207000	ug/L	500	01/28/19 23:31	
EPA 6010D	Chromium	14.0	ug/L	5.0	01/28/19 00:12	
EPA 6010D	Copper	17.2	ug/L	5.0	01/28/19 00:12	
EPA 6010D	Molybdenum	7.9	ug/L	5.0	01/28/19 00:12	
EPA 6010D	Nickel	9.7	ug/L	5.0	01/28/19 00:12	
EPA 6010D	Vanadium	7.6	ug/L	5.0	01/28/19 00:12	
EPA 6010D	Zinc	31.1	ug/L	10.0	01/28/19 00:12	
EPA 6020B	Boron	39.1	ug/L	25.0	01/29/19 12:34	
EPA 6020B	Lithium	94.1	ug/L	2.5	01/29/19 12:34	
EPA 903.1	Radium-226	1.21 ± 0.623 (0.718)	pĊi/L		02/07/19 20:42	
EPA 904.0	Radium-228	C:NA T:86% 1.49 ± 0.464 (0.590) C:96% T:86%	pCi/L		02/05/19 16:04	
Total Radium Calculation	Total Radium	2.70 ± 1.09 (1.31)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	2590	mg/L	250	01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	1200	mg/L	15.0	01/31/19 11:20	
EPA 300.0 Rev 2.1 1993	Fluoride	0.26	mg/L	0.10	01/31/19 01:13	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
			0			
92415385008	MW-2	120	~~~~/l	15.0	01/21/10 11:20	
EPA 300.0 Rev 2.1 1993	Sulfate	130	mg/L	15.0	01/31/19 11:20	
92415385009	MW-8					
EPA 6010D	Barium	1170	ug/L		01/28/19 00:16	
EPA 6010D	Calcium	110000	ug/L		01/28/19 23:34	
EPA 6010D	Zinc	13.6	ug/L		01/28/19 00:16	
EPA 6020B	Lithium	21.7	ug/L	2.5	01/29/19 12:37	
EPA 903.1	Radium-226	0.743 ± 0.567 (0.806) C:NA T:88%	pCi/L		02/07/19 20:42	
EPA 904.0	Radium-228	1.20 ± 0.439 (0.647) C:94% T:82%	pCi/L		02/05/19 16:04	
Total Radium Calculation	Total Radium	1.94 ± 1.01 (1.45)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	814	mg/L	50.0	01/25/19 23:32	
EPA 300.0 Rev 2.1 1993	Chloride	377	mg/L	8.0	01/31/19 11:37	M6
EPA 300.0 Rev 2.1 1993	Sulfate	7.9	mg/L	1.0	01/31/19 02:19	
92415385010	MW-6					
EPA 6010D	Barium	89.7	ug/L	5.0	01/28/19 00:19	
EPA 6010D	Calcium	34400	ug/L	100	01/28/19 00:19	
EPA 6010D	Chromium	5.3	ug/L	5.0	01/28/19 00:19	
EPA 6010D	Zinc	17.7	ug/L	10.0	01/28/19 00:19	
EPA 6020B	Lithium	27.9	ug/L	2.5	01/29/19 12:40	
EPA 903.1	Radium-226	0.000 ± 0.340 (0.719)	pCi/L		02/07/19 20:42	
		C:NA T:90%				
EPA 904.0	Radium-228	0.628 ± 0.315 (0.538) C:92% T:88%	pCi/L		02/05/19 16:04	
Total Radium Calculation	Total Radium	0.628 ± 0.655 (1.26)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	649	mg/L	25.0	01/26/19 01:25	
EPA 300.0 Rev 2.1 1993	Chloride	229	mg/L	5.0	01/31/19 13:15	
EPA 300.0 Rev 2.1 1993	Fluoride	0.40	mg/L	0.10	01/31/19 03:09	
EPA 300.0 Rev 2.1 1993	Sulfate	48.7	mg/L	1.0	01/31/19 03:09	
92415385011	DUP					
EPA 6010D	Barium	90.4	ug/L	5.0	01/28/19 00:22	
EPA 6010D	Calcium	35200	ug/L	100	01/28/19 00:22	
EPA 6010D	Chromium	5.2	ug/L	5.0	01/28/19 00:22	
EPA 6010D	Zinc	17.5	ug/L	10.0	01/28/19 00:22	
EPA 6020B	Lithium	28.6	ug/L	2.5	01/29/19 12:43	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92415385011	DUP					
EPA 903.1	Radium-226	0.510 ±	pCi/L		02/07/19 20:42	
		0.461 (0.680)				
		C:NA T:89%				
EPA 904.0	Radium-228	0.757 ±	pCi/L		02/05/19 16:04	
		0.351 (0.585)				
		(0.383) C:94%				
		T:81%				
Total Radium Calculation	Total Radium	1.27 ± 0.812	pCi/L		02/08/19 12:45	
		(1.27)				
SM 2540C-2011	Total Dissolved Solids	649	mg/L	25.0	01/26/19 01:27	
EPA 300.0 Rev 2.1 1993	Chloride	228	mg/L	5.0	01/31/19 13:31	
EPA 300.0 Rev 2.1 1993	Fluoride	0.39	mg/L		01/31/19 03:26	
EPA 300.0 Rev 2.1 1993	Sulfate	49.3	mg/L	1.0	01/31/19 03:26	
92415385012	MW-5					
EPA 6010D	Barium	123	ug/L	5.0	01/28/19 00:31	
EPA 6010D	Calcium	13700	ug/L	100	01/28/19 00:31	
EPA 6020B	Lithium	8.0	ug/L	2.5	01/29/19 12:46	
EPA 903.1	Radium-226	0.108 ±	pCi/L		02/07/19 20:42	
		0.366 (0.706)				
		C:NA T:87%				
EPA 904.0	Radium-228	0.695 ±	pCi/L		02/05/19 16:04	
		0.324 (0.517)				
		C:93%				
		T:79%				
Total Radium Calculation	Total Radium	0.803 ± 0.690	pCi/L		02/08/19 12:45	
		(1.22)				
SM 2540C-2011	Total Dissolved Solids	261	mg/L	25.0	01/29/19 15:06	
EPA 300.0 Rev 2.1 1993	Chloride	22.2	mg/L	1.0	01/31/19 03:42	
EPA 300.0 Rev 2.1 1993	Fluoride	0.57	mg/L	0.10	01/31/19 03:42	
EPA 300.0 Rev 2.1 1993	Sulfate	2.9	mg/L	1.0	01/31/19 03:42	
92415385013	MW-1					
EPA 6010D	Barium	242	ug/L	5.0	01/28/19 00:34	
EPA 6010D	Calcium	205000	ug/L	500	01/28/19 23:37	
EPA 6010D	Zinc	14.7	ug/L		01/28/19 00:34	
EPA 6020B	Lithium	30.9	ug/L	2.5	01/29/19 12:49	
EPA 903.1	Radium-226	0.607 ± 0.425	pCi/L		02/07/19 20:57	
		(0.512)				
		C:NA T:95%				
EPA 904.0	Radium-228	0.737 ±	pCi/L		02/05/19 16:04	
		0.337 (0.550)				
		(0.550) C:93%				
		T:85%				

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92415385013	MW-1					
Total Radium Calculation	Total Radium	1.34 ± 0.762 (1.06)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	`1510	mg/L	50.0	01/29/19 15:06	
EPA 300.0 Rev 2.1 1993	Chloride	756	mg/L	16.0	01/31/19 13:47	
EPA 300.0 Rev 2.1 1993	Fluoride	0.16	mg/L	0.10		
EPA 300.0 Rev 2.1 1993	Sulfate	8.0	mg/L	1.0	01/31/19 03:58	
92415385014	MW-7R					
EPA 6010D	Barium	255	ug/L	5.0	01/28/19 00:37	
EPA 6010D	Calcium	89100	ug/L	100	01/28/19 00:37	
EPA 6010D	Chromium	6.5	ug/L	5.0	01/28/19 00:37	
EPA 6010D	Zinc	10.7	ug/L	10.0	01/28/19 00:37	
EPA 6020B	Lithium	25.4	ug/L	2.5	01/29/19 12:52	
EPA 6020B	Thallium	0.12	ug/L	0.10	01/28/19 21:59	
EPA 903.1	Radium-226	0.987 ± 0.578 (0.733) C:NA T:93%	pCi/L		02/07/19 20:57	
EPA 904.0	Radium-228	1.01 ± 0.361 (0.496) C:94% T:88%	pCi/L		02/05/19 16:04	
Total Radium Calculation	Total Radium	2.00 ± 0.939 (1.23)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	820	mg/L	50.0	01/29/19 15:06	
EPA 300.0 Rev 2.1 1993	Chloride	289	mg/L	6.0	01/31/19 14:03	
EPA 300.0 Rev 2.1 1993	Fluoride	0.11	mg/L	0.10	01/31/19 04:15	
EPA 300.0 Rev 2.1 1993	Sulfate	18.3	mg/L	1.0	01/31/19 04:15	
92415385015	MW-3					
EPA 6010D	Barium	715	ug/L	5.0	01/28/19 00:41	
EPA 6010D	Calcium	194000	ug/L	500	01/28/19 23:40	
EPA 6010D	Chromium	179	ug/L	5.0	01/28/19 00:41	
EPA 6010D	Cobalt	6.2	ug/L	5.0	01/28/19 00:41	
EPA 6010D	Copper	36.0	ug/L	5.0	01/28/19 00:41	
EPA 6010D	Lead	7.3	ug/L	5.0	01/28/19 00:41	
EPA 6010D	Molybdenum	12.0	ug/L	5.0	01/28/19 00:41	
EPA 6010D	Nickel	86.0	ug/L	5.0	01/28/19 00:41	
EPA 6010D	Vanadium	13.9	ug/L		01/28/19 00:41	
EPA 6010D	Zinc	42.7	ug/L		01/28/19 00:41	
EPA 6020B	Lithium	72.6	ug/L		01/29/19 12:55	
EPA 903.1	Radium-226	1.92 ± 0.716 (0.622) C:NA T:93%	pCi/L		02/07/19 20:57	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92415385015	MW-3					
EPA 904.0	Radium-228	2.00 ± 0.570 (0.657) C:94% T:81%	pCi/L		02/05/19 16:05	
Total Radium Calculation	Total Radium	3.92 ± 1.29 (1.28)	pCi/L		02/08/19 12:45	
SM 2540C-2011	Total Dissolved Solids	2360	mg/L	50.0	01/30/19 21:12	
EPA 300.0 Rev 2.1 1993	Chloride	1120	mg/L	20.0	01/31/19 14:20	
EPA 300.0 Rev 2.1 1993	Fluoride	0.42	mg/L	0.10	01/31/19 04:31	
EPA 300.0 Rev 2.1 1993	Sulfate	80.2	mg/L	1.0	01/31/19 04:31	
92415385016	EQUIP BLANK					
EPA 903.1	Radium-226	0.303 ± 0.397 (0.661) C:NA T:94%	pCi/L		02/07/19 20:57	
EPA 904.0	Radium-228	0.676 ± 0.315 (0.523) C:91% T:92%	pCi/L		02/05/19 16:05	
Total Radium Calculation	Total Radium	0.979 ± 0.712 (1.18)	pCi/L		02/08/19 12:45	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: TRIP BLANK	Lab ID: 924	15385001	Collected: 01/21/1	19 13:00	Received: 0	01/25/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260B					
Acetone	ND	ug/L	25.0	1		01/28/19 13:52	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 13:52	107-13-1	
Benzene	ND	ug/L	1.0	1		01/28/19 13:52	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 13:52	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 13:52	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 13:52	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 13:52	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 13:52	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 13:52	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 13:52	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 13:52	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 13:52	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/28/19 13:52	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 13:52	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 13:52	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		01/28/19 13:52	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 13:52	95-50-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 13:52	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 13:52	110-57-6	
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 13:52		
1,2-Dichloroethane	ND	ug/L	1.0	1		01/28/19 13:52		
1,1-Dichloroethene	ND	ug/L	1.0	1		01/28/19 13:52		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 13:52		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 13:52		
1,2-Dichloropropane	ND	ug/L	1.0	1		01/28/19 13:52		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 13:52		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 13:52		
Ethylbenzene	ND	ug/L	1.0	1		01/28/19 13:52		
2-Hexanone	ND	ug/L	5.0	1		01/28/19 13:52		
lodomethane	ND	ug/L	20.0	1		01/28/19 13:52		
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 13:52		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/28/19 13:52		
Styrene	ND	ug/L	1.0	1		01/28/19 13:52		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 13:52		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 13:52		
Tetrachloroethene	ND	ug/L	1.0	1		01/28/19 13:52		
Toluene	ND	ug/L	1.0	1		01/28/19 13:52		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/28/19 13:52		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/28/19 13:52		
Trichloroethene	ND	ug/L	1.0	1		01/28/19 13:52		
Trichlorofluoromethane	ND	-				01/28/19 13:52		
	ND	ug/L	1.0 1.0	1 1		01/28/19 13:52		
1,2,3-Trichloropropane Vinyl acetate	ND	ug/L	1.0	1		01/28/19 13:52		
,		ug/L				01/28/19 13:52		
Vinyl chloride	ND	ug/L	1.0	1				
Xylene (Total) <i>Surrogates</i>	ND	ug/L	1.0	1		01/28/19 13:52	1330-20-7	
4-Bromofluorobenzene (S)	97	%	70-130	1		01/28/19 13:52	460-00-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: TRIP BLANK	Lab ID: 924	15385001	Collected: 01/21/1	9 13:00	Received: 0	1/25/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	60B					
<i>Surrogates</i> 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	103 100	% %	70-130 70-130	1 1		01/28/19 13:52 01/28/19 13:52		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: LEACHATE	Lab ID: 924	15385002	Collected: 01/21/1	9 13:20	Received: 01	/25/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	hod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/27/19 23:31	7440-38-2	
Barium	73.4	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/27/19 23:31	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/27/19 23:31	7440-43-9	
Calcium	227000	ug/L	1000	10	01/26/19 07:42	01/28/19 23:12	7440-70-2	M6
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7439-92-1	
Molybdenum	147	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7439-98-7	
Nickel	5.4	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/27/19 23:31	7782-49-2	
Silver	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-22-4	
Vanadium	6.5	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:31	7440-62-2	
Zinc	ND	ug/L	10.0	1	01/26/19 07:42	01/27/19 23:31	7440-66-6	
6020 MET ICPMS	Analytical Mether	hod: EPA 60	20B Preparation Me	thod: E	PA 3010A			
Boron	1760	ug/L	250	10	01/26/19 10:00	01/29/19 11:58	7440-42-8	M6
Lithium	26.5	ug/L	2.5	1		01/28/19 20:57		NIO
Thallium	0.47	ug/L	0.10	1		01/28/19 20:57		
7470 Mercury		•	170A Preparation Me		PA 7470A			
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 12:37	7439-97-6	M1
8260 MSV Low Level Landfill	Analytical Mether	hod: EPA 82	260B					
Acetone	ND	ug/L	25.0	1		01/28/19 14:26	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 14:26		
Benzene	ND	ug/L	1.0	1		01/28/19 14:26		
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 14:26		
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 14:26		
Bromoform	ND	ug/L	1.0	1		01/28/19 14:26		
Bromomethane	ND	ug/L	2.0	1		01/28/19 14:26		
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 14:26		
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 14:26		
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 14:26		
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 14:26		
Chloroethane	ND	ug/L	1.0	1		01/28/19 14:26		
Chloroform	ND	ug/L	5.0	1		01/28/19 14:26		
Chloromethane	ND	ug/L	1.0	1		01/28/19 14:26		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 14:26		
Dibromomethane	ND	ug/L	1.0	1		01/28/19 14:26		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 14:26		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 14:26		
trans-1,4-Dichloro-2-butene	ND	ug/L ug/L	1.0	1		01/28/19 14:26		
		-						
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 14:26	15-34-3	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: LEACHATE	Lab ID: 924	15385002	Collected: 01/21/1	9 13:20	Received: 01/25/19 12:00 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Mether	nod: EPA 82	260B			
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28/19 14:26 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28/19 14:26 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 14:26 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 14:26 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28/19 14:26 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 14:26 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 14:26 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1	01/28/19 14:26 100-41-4	
2-Hexanone	ND	ug/L	5.0	1	01/28/19 14:26 591-78-6	
lodomethane	ND	ug/L	20.0	1	01/28/19 14:26 74-88-4	
Methylene Chloride	ND	ug/L	5.0	1	01/28/19 14:26 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28/19 14:26 108-10-1	
Styrene	ND	ug/L	1.0	1	01/28/19 14:26 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 14:26 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 14:26 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1	01/28/19 14:26 127-18-4	
Toluene	ND	ug/L	1.0	1	01/28/19 14:26 108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28/19 14:26 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28/19 14:26 79-00-5	
Trichloroethene	ND	ug/L	1.0	1	01/28/19 14:26 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1	01/28/19 14:26 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	01/28/19 14:26 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1	01/28/19 14:26 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1	01/28/19 14:26 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1	01/28/19 14:26 1330-20-7	
Surrogates		- J	-			
4-Bromofluorobenzene (S)	95	%	70-130	1	01/28/19 14:26 460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130	1	01/28/19 14:26 17060-07-0	
Toluene-d8 (S)	99	%	70-130	1	01/28/19 14:26 2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011			
Total Dissolved Solids	1110	mg/L	50.0	1	01/25/19 23:32	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993			
Chloride	12.5	mg/L	1.0	1	01/30/19 23:35 16887-00-6	
Fluoride	0.17	mg/L	0.10	1	01/30/19 23:35 16984-48-8	
Sulfate	483	mg/L	10.0	10	01/31/19 09:59 14808-79-8	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: SW-2	Lab ID: 924	15385003	Collected: 01/21/1	9 14:00	0 Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/27/19 23:57	7440-38-2	
Barium	94.2	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/27/19 23:57	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/27/19 23:57	7440-43-9	
Calcium	5230	ug/L	100	1	01/26/19 07:42	01/27/19 23:57	7440-70-2	
Chromium	5.0	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7440-48-4	
Copper	5.5	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7440-50-8	
Lead	5.4	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/27/19 23:57	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/27/19 23:57	7782-49-2	
Silver	ND	ug/L	5.0	1		01/27/19 23:57		
Vanadium	13.1	ug/L	5.0	1		01/27/19 23:57		
Zinc	14.3	ug/L	10.0	1		01/27/19 23:57		
6020 MET ICPMS	Analytical Met	-	20B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/10 10:00	01/29/19 12:13	7440-42-8	
Lithium	ND	ug/L	23.0	1		01/28/19 21:13		
Thallium	ND	ug/L ug/L	0.10	1		01/28/19 21:13		
		-				01/20/19 21.13	7440-20-0	
7470 Mercury	Analytical Met	100. EFA 74	170A Preparation Me	inou. E	FA 1410A			
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 12:44	7439-97-6	
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	260B					
Acetone	ND	ug/L	25.0	1		01/28/19 14:43	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 14:43	107-13-1	
Benzene	ND	ug/L	1.0	1		01/28/19 14:43	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 14:43	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 14:43	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 14:43	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 14:43	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 14:43	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 14:43	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 14:43	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 14:43	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 14:43	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/28/19 14:43	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 14:43	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 14:43	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		01/28/19 14:43	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 14:43		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 14:43		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 14:43		
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 14:43		
.,		~g, _	1.0	•		0.,20,10 11.40		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: SW-2	Lab ID: 924	15385003	Collected: 01/21/1	9 14:00	Received: 01/25/19 12:00 Mat	rix: Water
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No. Qual
8260 MSV Low Level Landfill	Analytical Me	thod: EPA 82	260B			
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28/19 14:43 1	07-06-2
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28/19 14:43 7	5-35-4
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 14:43 1	56-59-2
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 14:43 1	56-60-5
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28/19 14:43 7	8-87-5
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 14:43 1	0061-01-5
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 14:43 1	0061-02-6
Ethylbenzene	ND	ug/L	1.0	1	01/28/19 14:43 1	00-41-4
2-Hexanone	ND	ug/L	5.0	1	01/28/19 14:43 5	91-78-6
lodomethane	ND	ug/L	20.0	1	01/28/19 14:43 7	4-88-4
Methylene Chloride	ND	ug/L	5.0	1	01/28/19 14:43 7	5-09-2
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28/19 14:43 1	08-10-1
Styrene	ND	ug/L	1.0	1	01/28/19 14:43 1	00-42-5
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 14:43 6	30-20-6
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 14:43 7	9-34-5
Tetrachloroethene	ND	ug/L	1.0	1	01/28/19 14:43 1	
Toluene	ND	ug/L	1.0	1	01/28/19 14:43 1	08-88-3
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28/19 14:43 7	1-55-6
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28/19 14:43 7	
Trichloroethene	ND	ug/L	1.0	1	01/28/19 14:43 7	9-01-6
Trichlorofluoromethane	ND	ug/L	1.0	1	01/28/19 14:43 7	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	01/28/19 14:43 9	6-18-4
Vinyl acetate	ND	ug/L	2.0	1	01/28/19 14:43 1	
Vinyl chloride	ND	ug/L	1.0	1	01/28/19 14:43 7	
Xylene (Total)	ND	ug/L	1.0	1	01/28/19 14:43 1	
Surrogates		- <u>9</u> –				
4-Bromofluorobenzene (S)	98	%	70-130	1	01/28/19 14:43 4	60-00-4
1,2-Dichloroethane-d4 (S)	104	%	70-130	1	01/28/19 14:43 1	7060-07-0
Toluene-d8 (S)	101	%	70-130	1	01/28/19 14:43 2	037-26-5
2540C Total Dissolved Solids	Analytical Me	thod: SM 25	40C-2011			
Total Dissolved Solids	229	mg/L	25.0	1	01/25/19 23:32	
300.0 IC Anions 28 Days	Analytical Me	thod: EPA 30	00.0 Rev 2.1 1993			
Chloride	23.2	mg/L	1.0	1	01/30/19 23:51 1	6887-00-6
Fluoride	ND	mg/L	0.10	1	01/30/19 23:51 1	6984-48-8
Sulfate	7.9	mg/L	1.0	1	01/30/19 23:51 1	4808-79-8

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: SW-1	Lab ID: 924	15385004	Collected: 01/21/1	9 14:00	Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	hod: EPA 60	10D Preparation Me	thod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:00	7440-38-2	
Barium	85.2	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:00	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:00	7440-43-9	
Calcium	2970	ug/L	100	1	01/26/19 07:42	01/28/19 00:00	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7440-02-0	
Selenium	ND	ug/L	10.0	1		01/28/19 00:00		
Silver	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:00	7440-22-4	
Vanadium	9.4	ug/L	5.0	1		01/28/19 00:00		
Zinc	11.5	ug/L	10.0	1		01/28/19 00:00		
6020 MET ICPMS	Analytical Mether	hod: EPA 60	20B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/19 10:00	01/29/19 12:16	7440-42-8	
Lithium	ND	ug/L	25.0	1		01/28/19 21:17		
Thallium	ND	ug/L	0.10	1		01/28/19 21:17		
		-				01/20/19 21.17	7440-20-0	
7470 Mercury			70A Preparation Me					
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 12:47	7439-97-6	
8260 MSV Low Level Landfill	Analytical Mether	hod: EPA 82	60B					
Acetone	ND	ug/L	25.0	1		01/28/19 15:00	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 15:00	107-13-1	
Benzene	ND	ug/L	1.0	1		01/28/19 15:00		
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 15:00	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 15:00	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 15:00		
Bromomethane	ND	ug/L	2.0	1		01/28/19 15:00	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 15:00	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 15:00	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 15:00	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 15:00	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 15:00	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/28/19 15:00	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 15:00	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 15:00	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		01/28/19 15:00	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 15:00	95-50-1	
1,4-Dichlorobenzene	ND	-	1.0	1		01/28/19 15:00	106-46-7	
,		ug/L ug/L	1.0 1.0	1 1		01/28/19 15:00 01/28/19 15:00		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: SW-1	Lab ID: 924	15385004	Collected: 01/21/1	9 14:00	Received: 01/25/19 12:00 Matrix: \	Nater
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CA	S No. Qual
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	260B			
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28/19 15:00 107-0	6-2
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:00 75-35	-4
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:00 156-5	9-2
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:00 156-6	0-5
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28/19 15:00 78-87	-5
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 15:00 10061	-01-5
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 15:00 10061	-02-6
Ethylbenzene	ND	ug/L	1.0	1	01/28/19 15:00 100-4	1-4
2-Hexanone	ND	ug/L	5.0	1	01/28/19 15:00 591-7	8-6
lodomethane	ND	ug/L	20.0	1	01/28/19 15:00 74-88	-4
Methylene Chloride	ND	ug/L	5.0	1	01/28/19 15:00 75-09	-2
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28/19 15:00 108-1	
Styrene	ND	ug/L	1.0	1	01/28/19 15:00 100-4	2-5
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 15:00 630-2	0-6
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 15:00 79-34	-5
Tetrachloroethene	ND	ug/L	1.0	1	01/28/19 15:00 127-1	
Toluene	ND	ug/L	1.0	1	01/28/19 15:00 108-8	8-3
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28/19 15:00 71-55	-6
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28/19 15:00 79-00	
Trichloroethene	ND	ug/L	1.0	1	01/28/19 15:00 79-01	-6
Trichlorofluoromethane	ND	ug/L	1.0	1	01/28/19 15:00 75-69	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	01/28/19 15:00 96-18	
Vinyl acetate	ND	ug/L	2.0	1	01/28/19 15:00 108-0	
Vinyl chloride	ND	ug/L	1.0	1	01/28/19 15:00 75-01	
Xylene (Total)	ND	ug/L	1.0	1	01/28/19 15:00 1330-	
Surrogates			-			-
4-Bromofluorobenzene (S)	99	%	70-130	1	01/28/19 15:00 460-0	0-4
1,2-Dichloroethane-d4 (S)	101	%	70-130	1	01/28/19 15:00 17060)-07-0
Toluene-d8 (S)	101	%	70-130	1	01/28/19 15:00 2037-	26-5
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C-2011			
Total Dissolved Solids	182	mg/L	25.0	1	01/25/19 23:32	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	00.0 Rev 2.1 1993			
Chloride	6.9	mg/L	1.0	1	01/31/19 00:08 16887	′-00-6
Fluoride	ND	mg/L	0.10	1	01/31/19 00:08 16984	1-48-8
Sulfate	3.8	mg/L	1.0	1	01/31/19 00:08 14808	3-79-8

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: BG-1	Lab ID: 924	15385005	Collected: 01/22/1	9 10:10	0 Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0D Preparation Me	ethod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:03	7440-38-2	
Barium	278	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:03	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:03	7440-43-9	
Calcium	23900	ug/L	100	1	01/26/19 07:42	01/28/19 00:03	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:03	7782-49-2	
Silver	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-22-4	
Vanadium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:03	7440-62-2	
Zinc	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:03	7440-66-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 602	20B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/19 10:00	01/29/19 12:19	7440-42-8	
Lithium	16.0	ug/L	2.5	1		01/28/19 21:20		
Thallium	ND	ug/L	0.10	1		01/28/19 21:20		
7470 Mercury	Analytical Mether	-	OA Preparation Me	thod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 12:54	7439-97-6	
8260 MSV Low Level Landfill	Analytical Meth	nod: EPA 826	60B					
Acetone	ND	ug/L	25.0	1		01/28/19 15:17	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 15:17	107-13-1	
Benzene	ND	ug/L	1.0	1		01/28/19 15:17	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 15:17	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 15:17	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 15:17	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 15:17	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 15:17	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 15:17	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 15:17	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 15:17	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 15:17		
Chloroform	ND	ug/L	5.0	1		01/28/19 15:17	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 15:17		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 15:17		
Dibromomethane	ND	ug/L	1.0	1		01/28/19 15:17	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 15:17		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 15:17		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 15:17		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: BG-1	Lab ID: 924	15385005	Collected: 01/22/1	9 10:10	Received: 01/25/19 12:00 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	260B			
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28/19 15:17 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:17 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:17 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:17 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28/19 15:17 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 15:17 10061-01-5	5
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 15:17 10061-02-6	6
Ethylbenzene	ND	ug/L	1.0	1	01/28/19 15:17 100-41-4	
2-Hexanone	ND	ug/L	5.0	1	01/28/19 15:17 591-78-6	
lodomethane	ND	ug/L	20.0	1	01/28/19 15:17 74-88-4	
Methylene Chloride	ND	ug/L	5.0	1	01/28/19 15:17 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28/19 15:17 108-10-1	
Styrene	ND	ug/L	1.0	1	01/28/19 15:17 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 15:17 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 15:17 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1	01/28/19 15:17 127-18-4	
Toluene	ND	ug/L	1.0	1	01/28/19 15:17 108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28/19 15:17 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28/19 15:17 79-00-5	
Trichloroethene	ND	ug/L	1.0	1	01/28/19 15:17 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1	01/28/19 15:17 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	01/28/19 15:17 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1	01/28/19 15:17 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1	01/28/19 15:17 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1	01/28/19 15:17 1330-20-7	
Surrogates	NB	ug/L	1.0		01/20/10 10:11 1000 20 1	
4-Bromofluorobenzene (S)	100	%	70-130	1	01/28/19 15:17 460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1	01/28/19 15:17 17060-07-0)
Toluene-d8 (S)	100	%	70-130	1	01/28/19 15:17 2037-26-5	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C-2011			
Total Dissolved Solids	546	mg/L	50.0	1	01/25/19 23:32	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	00.0 Rev 2.1 1993			
Chloride	213	mg/L	4.0	4	01/31/19 10:15 16887-00-6	6
Fluoride	0.17	mg/L	0.10	1	01/31/19 00:24 16984-48-8	3
Sulfate	23.2	mg/L	1.0	1	01/31/19 00:24 14808-79-8	3

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: BG-2	Lab ID: 924	15385006	Collected: 01/22/1	9 13:45	5 Received: 01	/25/19 12:00 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	hod: EPA 601	0D Preparation Me	ethod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:06	7440-38-2	
Barium	123	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:06	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:06	7440-43-9	
Calcium	89600	ug/L	100	1	01/26/19 07:42	01/28/19 00:06	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:06	7782-49-2	
Silver	ND	ug/L	5.0	1		01/28/19 00:06		
Vanadium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:06	7440-62-2	
Zinc	ND	ug/L	10.0	1		01/28/19 00:06		
6020 MET ICPMS	Analytical Mether	hod: EPA 602	0B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/10 10:00	01/29/19 12:22	7440 42 8	
Lithium	12.1	ug/L	25.0	1		01/28/19 21:24		
Thallium	ND	ug/L ug/L	0.10	1		01/28/19 21:24		
		-				01/20/19 21.24	7440-20-0	
7470 Mercury	·		'0A Preparation Me					
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 12:56	7439-97-6	
8260 MSV Low Level Landfill	Analytical Meth	hod: EPA 826	60B					
Acetone	ND	ug/L	25.0	1		01/28/19 15:34	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 15:34		
Benzene	ND	ug/L	1.0	1		01/28/19 15:34		
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 15:34	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 15:34	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 15:34	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 15:34	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 15:34	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 15:34	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 15:34	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 15:34	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 15:34	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/28/19 15:34	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 15:34		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 15:34	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		01/28/19 15:34	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 15:34	95-50-1	
		-				04/00/40 45 04	100 10 7	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 15:34	106-46-7	
1,4-Dichlorobenzene trans-1,4-Dichloro-2-butene	ND ND	ug/L ug/L	1.0 1.0	1 1		01/28/19 15:34 01/28/19 15:34		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: BG-2	Lab ID: 924	15385006	Collected: 01/22/1	9 13:45	Received: 01/25/19 12:00 Matrix: Wa	ter
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CAS N	lo. Qual
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	260B			
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28/19 15:34 107-06-2	2
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:34 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:34 156-59-2	2
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 15:34 156-60-5	5
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28/19 15:34 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 15:34 10061-0	1-5
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 15:34 10061-02	2-6
Ethylbenzene	ND	ug/L	1.0	1	01/28/19 15:34 100-41-4	1
2-Hexanone	ND	ug/L	5.0	1	01/28/19 15:34 591-78-6	6
lodomethane	ND	ug/L	20.0	1	01/28/19 15:34 74-88-4	
Methylene Chloride	ND	ug/L	5.0	1	01/28/19 15:34 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28/19 15:34 108-10-1	l
Styrene	ND	ug/L	1.0	1	01/28/19 15:34 100-42-5	5
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 15:34 630-20-6	3
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 15:34 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1	01/28/19 15:34 127-18-4	ļ.
Toluene	ND	ug/L	1.0	1	01/28/19 15:34 108-88-3	3
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28/19 15:34 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28/19 15:34 79-00-5	
Trichloroethene	ND	ug/L	1.0	1	01/28/19 15:34 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1	01/28/19 15:34 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	01/28/19 15:34 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1	01/28/19 15:34 108-05-4	1
Vinyl chloride	ND	ug/L	1.0	1	01/28/19 15:34 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1	01/28/19 15:34 1330-20	-7
Surrogates						
4-Bromofluorobenzene (S)	96	%	70-130	1	01/28/19 15:34 460-00-4	1
1,2-Dichloroethane-d4 (S)	104	%	70-130	1	01/28/19 15:34 17060-0	7-0
Toluene-d8 (S)	100	%	70-130	1	01/28/19 15:34 2037-26	-5
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C-2011			
Total Dissolved Solids	810	mg/L	50.0	1	01/25/19 23:32	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	00.0 Rev 2.1 1993			
Chloride	218	mg/L	5.0	5	01/31/19 10:31 16887-0	0-6
Fluoride	0.16	mg/L	0.10	1	01/31/19 00:41 16984-4	8-8
Sulfate	64.7	mg/L	1.0	1	01/31/19 00:41 14808-7	9-8

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Parameters 6010 MET ICP	Results	Linite						
6010 MET ICP		Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical Meth	nod: EPA 60 ⁻	10D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:09	7440-38-2	
Barium	268	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:09	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:09	7440-43-9	
Calcium	64300	ug/L	100	1	01/26/19 07:42	01/28/19 00:09	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:09	7782-49-2	
Silver	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:09	7440-22-4	
Vanadium	ND	ug/L	5.0	1		01/28/19 00:09		
Zinc	29.4	ug/L	10.0	1		01/28/19 00:09		
6020 MET ICPMS	Analytical Meth	nod: EPA 602	20B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/19 10:00	01/29/19 12:25	7440-42-8	
Lithium	25.4	ug/L	2.5	1		01/28/19 21:27		
Thallium	ND	ug/L	0.10	1		01/28/19 21:27		
7470 Mercury		-	70A Preparation Me					
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 12:58	7439-97-6	
8260 MSV Low Level Landfill	Analytical Meth	nod: EPA 826	60B					
Acetone	ND	ug/L	25.0	1		01/28/19 15:51	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 15:51	107-13-1	
Benzene	ND	ug/L	1.0	1		01/28/19 15:51	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 15:51	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 15:51	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 15:51	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 15:51	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 15:51	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 15:51	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 15:51	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 15:51		
Chloroethane	ND	ug/L	1.0	1		01/28/19 15:51		
Chloroform	ND	ug/L	5.0	1		01/28/19 15:51		
Chloromethane	ND	ug/L	1.0	1		01/28/19 15:51		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 15:51		
Dibromomethane	ND	ug/L	1.0	1		01/28/19 15:51		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 15:51		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 15:51		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 15:51		
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 15:51		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-4	Lab ID: 924	15385007	Collected: 01/22/1	9 17:45	Received: 0	1/25/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260B					
1,2-Dichloroethane	ND	ug/L	1.0	1		01/28/19 15:51	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		01/28/19 15:51	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 15:51	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 15:51	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		01/28/19 15:51	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 15:51	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 15:51	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		01/28/19 15:51	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		01/28/19 15:51	591-78-6	
lodomethane	ND	ug/L	20.0	1		01/28/19 15:51	74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 15:51	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/28/19 15:51		
Styrene	ND	ug/L	1.0	1		01/28/19 15:51	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 15:51	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 15:51		
Tetrachloroethene	ND	ug/L	1.0	1		01/28/19 15:51		
Toluene	ND	ug/L	1.0	1		01/28/19 15:51	-	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/28/19 15:51		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/28/19 15:51		
Trichloroethene	ND	ug/L	1.0	1		01/28/19 15:51		
Trichlorofluoromethane	ND	ug/L	1.0	1		01/28/19 15:51		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		01/28/19 15:51		
Vinyl acetate	ND	ug/L	2.0	1		01/28/19 15:51		
Vinyl chloride	ND	ug/L	1.0	1		01/28/19 15:51		
Xylene (Total)	ND	ug/L	1.0	1		01/28/19 15:51		
Surrogates		ug/L	1.0	•		01/20/10 10:01	1000 20 1	
4-Bromofluorobenzene (S)	98	%	70-130	1		01/28/19 15:51	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1		01/28/19 15:51		
Toluene-d8 (S)	99	%	70-130	1		01/28/19 15:51		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	1170	mg/L	50.0	1		01/25/19 23:32		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	485	mg/L	10.0	10		01/31/19 10:48	16887-00-6	
Fluoride	0.29	mg/L	0.10	1		01/31/19 00:57	16984-48-8	
Sulfate	12.2	mg/L	1.0	1		01/31/19 00:57		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 6010 MET ICP Analytical Method: EPA 60100 Preparation Method: EPA 3010A 7440-38-0 Amimony ND ug/L 5.0 1 01/28/19 07.42 01/28/19 00.12 7440-38-2 Barium 360 ug/L 5.0 1 01/28/19 07.42 01/28/19 00.12 7440-38-2 Cadmium ND ug/L 1.0 1 01/28/19 07.42 01/28/19 00.12 7440-41-7 Cadmium ND ug/L 5.0 1 01/28/19 07.42 01/28/19 00.12 7440-41-7 Cadmium 100 ug/L 5.0 1 01/28/19 07.42 01/28/19 00.12 7440-44-4 Cabalt ND ug/L 5.0 1 01/28/19 07.42 01/28/19 00.12 7440-42-1 Cabalt ND ug/L 5.0 1 01/28/19 07.42 01/28/19 00.12 7440-42-2 Cabalt ND ug/L 5.0 1 <th>Sample: MW-2</th> <th>Lab ID: 924</th> <th>15385008</th> <th>Collected: 01/23/1</th> <th>9 08:40</th> <th>Received: 01</th> <th>/25/19 12:00 M</th> <th>latrix: Water</th> <th></th>	Sample: MW-2	Lab ID: 924	15385008	Collected: 01/23/1	9 08:40	Received: 01	/25/19 12:00 M	latrix: Water	
ND ug/L 5.0 1 01/26/19 07.42 01/28/19 07.42	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Assnic ND ug/L 10.0 1 01/26/19 07.42 01/28/19 00.12 7440-38-2 Berylium ND ug/L 1.0 1 01/26/19 07.42 01/28/19 00.12 7440-41-7 Cadnum ND ug/L 1.0 1 01/26/19 07.42 01/28/19 0	6010 MET ICP	Analytical Met	hod: EPA 60	10D Preparation Me	ethod: E	PA 3010A			
Barium360upL5.0101/26/19 07:4201/28/19 07:427440-43-9BerylliumNDupL1.0101/26/19 07:4201/28/19 07:427440-43-9Calcium207000upL5.00101/26/19 07:4201/28/19 00:127440-43-9Calcium207000upL5.00101/26/19 07:4201/28/19 00:127440-47-3CobaltNDupL5.0101/26/19 07:4201/28/19 00:127440-47-3CobaltNDupL5.0101/26/19 07:4201/28/19 00:127440-47-3CobaltNDupL5.0101/26/19 07:4201/28/19 00:127440-45-8LeadNDupL5.0101/26/19 07:4201/28/19 00:127440-62-8LeadNDupL5.0101/26/19 07:4201/28/19 00:127440-62-8SteinimNDupL5.0101/26/19 07:4201/28/19 00:127440-62-8SteinimNDupL5.0101/26/19 07:4201/28/19 00:127440-62-8SteinimNDupL0.0101/28/19 00:127440-62-8SteinimNDupL0.0101/28/19 00:127440-62-8SteinimNDupL0.0101/28/19 00:127440-62-8SteinimNDupL0.0101/28/19 00:127440-62-8SteinimNDupL0.0101/28/19 00:127440-62-8 <t< td=""><td>Antimony</td><td>ND</td><td>ug/L</td><td>5.0</td><td>1</td><td>01/26/19 07:42</td><td>01/28/19 00:12</td><td>7440-36-0</td><td></td></t<>	Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7440-36-0	
BerylliumNDugL1.0101/26/19/3201/28/19/0127440-417Cadmium207000ugL5.0501/26/19/07-201/28/19/0127440-473Calcum14.0ugL5.0101/28/19/07-201/28/19/0127440-473CobaltNDugL5.0101/28/19/07-201/28/19/07-27440-473Coper17.2ugL5.0101/28/19/07-201/28/19/07-27440-473CobaltNDugL5.0101/28/19/07-201/28/19/07-27440-473CobaltNDugL5.0101/28/19/07-201/28/19/07-27440-473CobaltNDugL5.0101/28/19/07-201/28/19/07-27440-470Nokel7.7ugL5.0101/28/19/07-201/28/19/07-27440-42-8SteinumNDugL5.0101/28/19/07-201/28/19/07-27440-42-8SteinumNDugL5.0101/28/19/07-201/28/19/07-27440-42-8Steinum31.1ugL2.0101/28/19/07-201/28/19/07-27440-42-8Steinum34.1ugL2.0101/28/19/07-201/28/19/07-27440-42-8CobattNDugL2.0101/28/19/07-201/28/19/07-27440-42-8Steinum34.1ugL2.0101/28/19/07-201/28/19/07-27440-42-8Steinum94.1ugL2.01 </td <td>Arsenic</td> <td>ND</td> <td>ug/L</td> <td>10.0</td> <td>1</td> <td>01/26/19 07:42</td> <td>01/28/19 00:12</td> <td>7440-38-2</td> <td></td>	Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:12	7440-38-2	
Cadium ND ugL 1.0 1 01/26/19/07-42 01/28/19/07-12 7440-43-9 Calcium 207000 ugL 500 5 01/28/19/07-42 01/28/19/07-12 7440-47-3 Cobatt ND ugL 5.0 1 01/28/19/07-42 01/28/19/07-12 7440-47-3 Cobatt ND ugL 5.0 1 01/28/19/07-42 01/28/19/07-12 7440-47-3 Cobatt ND ugL 5.0 1 01/28/19/07-42 01/28/19/07-12 7439-98-7 Nokal .97 ugL 5.0 1 01/28/19/07-42 01/28/19/07-12 7440-42-8 Sterium .01 ugL 5.0 1 01/28/19/07-42 01/28/19/07-12 7440-42-8 Sterium .01 ugL 5.0 1 01/28/19/07-42 01/28/19/07-12 7440-42-8 Sterium .01 .01 01/28/19/07-42 01/28/19/07-12 7440-42-8 Sterium .01 .01/28/19/10-00 11/28/19/10-00 1/28/1	Barium	360	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7440-39-3	
Calcium 207000 ug/L 500 5 01/26/19/07-42 01/28/19/07-42	Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:12	7440-41-7	
Chromium 14.0 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-47-3 Cobalt ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-50-8 Lead ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-50-8 Lead ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-50-8 Nokel 9.7 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-0 Selenium ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-0 Silver ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-0 Silver ND ug/L 2.0 1 01/26/19 07:42 01/28/19 10:01 7440-62-0 Solo OHETICPMS Analytical Method: EPA 4002 01 01/28/19 10:00 01/28/19 10:01 7440-62-0 Thallium 91.1 ug/L 2.0 1 01/26/19 10:00 01/28/19 16:08 7440-28-0 <td< td=""><td>Cadmium</td><td>ND</td><td>ug/L</td><td>1.0</td><td>1</td><td>01/26/19 07:42</td><td>01/28/19 00:12</td><td>7440-43-9</td><td></td></td<>	Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:12	7440-43-9	
CobaltND ug/Lug/L5.0101/26/19 07:4201/28/19 00:127.440-48-4Copper17.2ug/L5.0101/26/19 07:4201/28/19 00:127.430-98-7Molydenum7.9ug/L5.0101/26/19 07:4201/28/19 00:127.430-98-7Nickel9.7ug/L5.0101/26/19 07:4201/28/19 00:127.430-98-7SeleniumNDug/L5.0101/26/19 07:4201/28/19 00:127.440-62-0SeleniumNDug/L5.0101/26/19 07:4201/28/19 00:127.440-62-0SilverNDug/L5.0101/26/19 07:4201/28/19 00:127.440-62-0Yanadium7.6ug/L5.0101/26/19 07:4201/28/19 00:127.440-62-0Boron39.1ug/L2.5101/26/19 10:0001/29/19 12:347.440-28-0Lihhum9.1ug/L2.5101/26/19 10:0001/29/19 12:347.440-28-0Thallium9.1ug/L2.5101/26/19 10:0001/28/19 12:347.440-28-0ArgonitrineNDug/L0.1101/28/19 10:0017.291-91.317.440-28-0SectoreNDug/L0.1101/28/19 16:086.764-1ArgonitrineNDug/L1.0101/28/19 16:086.764-1BroneNDug/L1.0101/28/19 16:087.440-28-0SectoreNDug/L1.0<	Calcium	207000	ug/L	500	5	01/26/19 07:42	01/28/19 23:31	7440-70-2	
Copper 17.2 u 5.0 1 01/26/19 07:42 01/28/19 00:12 7449-03-8 Lead ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7439-92-1 Nickel 9.7 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-02-0 Selenium ND ug/L 1.0 1 01/26/19 07:42 01/28/19 00:12 7440-02-0 Selenium ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-0 Silver ND ug/L 1.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-0 Zinc 31.1 ug/L 2.5 1 01/26/19 10:00 01/29/19 12:34 7439-93-2 Ethium 91.4 ug/L 0.10 1 01/28/19 10:01 7440-62-0 Thallium 91.4 ug/L 2.5 1 01/28/19 10:01 7440-42-8 Ethium 92.4 0.0 1 01/28/19 10:01 7439-93-2	Chromium	14.0	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7440-47-3	
Lead ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7439-98-1 Molybdenum 7.9 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7439-98-1 Nickel 9.7 ug/L 10.0 1 01/26/19 07:42 01/28/19 00:12 7420-92-0 Selenium ND ug/L 10.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-0 Vanadium 7.6 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-0 Vanadium 7.6 ug/L 2.0 1 01/26/19 10:00 01/29/19 12:34 7439-93-2 Edot Analytical Method: EPA 470A Preparation Method: EPA 470A 1 01/28/19 10:00 01/29/19 12:34 7439-93-2 Thallium ND ug/L 2.0 1 01/28/19 10:00 01/28/19 12:34 7440-84-8 Thallium ND ug/L 2.0 1 01/28/19 10:00 01/28/19 10:00 7429-91 Tha	Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7440-48-4	
Molybdenum 7.9 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7439-98-7 Nickel 9.7 ug/L 1.0 1 01/26/19 07:42 01/28/19 00:12 7440-02-0 Silver ND ug/L 1.0 1 01/26/19 07:42 01/28/19 00:12 7440-22-4 Silver ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-2 Zinc 31.1 ug/L 1.0 1 01/26/19 07:42 01/28/19 00:12 7440-66-2 Solo MET ICPMS Analytical Method: EPA 60208 Preparation Method: EVA 01/28/19 10:00 01/28/19 12:34 7440-42-8 Lithium 94.1 ug/L 2.5 1 01/28/19 10:00 01/28/19 12:34 7440-42-8 Lithium ND ug/L 0.0 1 01/28/19 10:00 01/28/19 12:34 7440-42-8 Lithium ND ug/L 0.0 1 01/28/19 10:00 01/28/19 12:34 7439-93-2 Thallium ND ug/L 0.0 1 01/28/19 12:34 740-24-2 <	Copper	17.2	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7440-50-8	
Nickel 9.7 ug/L 5.0 1 01/28/19 07:42 01/28/19 07:12 740-02-0 Selenium ND ug/L 10.0 1 01/28/19 07:2 740-02-0 Silver ND ug/L 5.0 1 01/28/19 07:2 740-02-0 Vanadium 7.6 ug/L 5.0 1 01/28/19 07:2 740-02-0 6020 MET ICPMS Analytical Method: EPA 60208 Preparation Method: EPA 3010A 01/28/19 07:0 01/28/19 07:12 7440-62-0 Boron 39.1 ug/L 2.5.0 1 01/28/19 10:00 01/29/19 12:34 7440-92-0 Lithium ND ug/L 2.5.0 1 01/28/19 10:00 01/29/19 12:34 7440-92-0 Thallium ND ug/L 0.0 1 01/28/19 10:00 01/28/19 12:34 7440-92-0 Thallium ND ug/L 0.10 1 01/28/19 12:34 7440-92-0 Store ND ug/L 0.10 1 01/28/19 16:08 7-49-25	Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7439-92-1	
Nickel 9,7 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 744-02-0 Selenium ND ug/L 10.0 1 01/28/19 07:42 01/28/19 00:12 744-02-24 Vanadium 7.6 ug/L 5.0 1 01/28/19 07:42 01/28/19 00:12 7440-62-0 Solo Atalytical Method: EPA 6020B Preparation 01/28/19 07:00 01/28/19 00:12 7440-62-0 Solo Atalytical Method: EPA 6020B Preparation 01/28/19 10:00 01/28/19 10:00 01/28/19 10:01 7440-62-0 Solo Malytical Method: EPA 6020B Preparation 01/28/19 10:00 01/28/19 12:34 7440-42-8 Lithium 94.1 ug/L 2.5 1 01/28/19 10:00 01/28/19 12:37 7440-28-0 Thallium ND ug/L 0.10 1 01/28/19 12:34 7440-42-8 Lithium ND ug/L 0.10 1 01/28/19 16:38 7439-32 747 Mercury ND ug/L	Molybdenum	7.9	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7439-98-7	
Selenium ND ug/L 10.0 1 01/26/19 07:42 01/28/19 00:12 748-49-2 Silver ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 740-62-2 Zinc 31.1 ug/L 10.0 1 01/26/19 07:42 01/28/19 00:12 740-62-2 G20 MET ICPMS Analytical Method: EPA 60208 Preparation 11/26/19 10:00 01/29/19 12:34 740-42-8 Lithium 94.1 ug/L 2.5. 1 01/26/19 10:00 01/29/19 12:34 740-42-8 Lithium 94.1 ug/L 0.2. 1 01/26/19 10:00 01/29/19 12:34 7439-93-2 747 Mercury ND ug/L 0.0 1 01/28/19 10:00 1/29/19 13:01 7439-93-2 Recury ND ug/L 0.0 1 01/28/19 16:08 6-64-1 Acrono thrine ND ug/L 1.0 1 01/28/19 16:08 7-4-3-3 Bromochoromethane ND ug/L 1.0 1	Nickel	9.7	-	5.0	1	01/26/19 07:42	01/28/19 00:12	7440-02-0	
Vanadium 7.6 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-2 Zinc 31.1 ug/L 100 1 01/26/19 07:42 01/28/19 00:12 7440-66-6 6020 MET ICPMS Analytical Methor: EPA 60208 Preparation 0 01/26/19 10:00 01/29/19 12:34 7440-28-1 Boron 39.1 ug/L 2.0 1 01/26/19 10:00 01/28/19 21:37 7440-28-1 Lithium 91.1 ug/L 0.20 1 01/26/19 10:00 01/28/19 21:37 7440-28-1 Tablium ND ug/L 0.20 1 01/28/19 10:01 7439-37-2 Tablium ND ug/L 0.20 1 01/28/19 16:08 6-64-1 Recury ND ug/L 0.20 1 01/28/19 16:08 6-64-1 Second ND ug/L 10.0 1 01/28/19 16:08 7-27-3 Bromochioromethane ND ug/L 10.0 1 01/28/19 16:08 7-27-4	Selenium	ND	-	10.0	1	01/26/19 07:42	01/28/19 00:12	7782-49-2	
Vanadium 7.6 ug/L 5.0 1 01/26/19 07:42 01/28/19 00:12 7440-62-2 Zinc 31.1 ug/L 100 1 01/26/19 07:42 01/28/19 00:12 7440-66-6 6020 MET ICPMS Analytical Methor: EPA 60208 Preparation 0 01/26/19 10:00 01/29/19 12:34 7440-28-1 Boron 39.1 ug/L 2.0 1 01/26/19 10:00 01/28/19 21:37 7440-28-1 Lithium 91.1 ug/L 0.20 1 01/26/19 10:00 01/28/19 21:37 7440-28-1 Tablium ND ug/L 0.20 1 01/28/19 10:01 7439-37-2 Tablium ND ug/L 0.20 1 01/28/19 16:08 6-64-1 Recury ND ug/L 0.20 1 01/28/19 16:08 6-64-1 Second ND ug/L 10.0 1 01/28/19 16:08 7-27-3 Bromochioromethane ND ug/L 10.0 1 01/28/19 16:08 7-27-4	Silver	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:12	7440-22-4	
Zinc31.1ug/L1.0101/26/19 07:4201/28/19 00:12740-66-66020 MET ICPMSAnalytical Method:EPA 60208Preparatomethod:EVA 101.001/26/19 10:0001/29/19 12:347439-93-2Boron39.1ug/L2.50101/26/19 10:0001/28/19 12:347439-93-2Thallium94.1ug/L2.50101/26/19 10:0001/28/19 12:347439-93-27470 MercuryAnalytical Method:EPA 7470APreparatomethod:Preparatomethod:Preparatomethod:Preparatomethod:01/28/19 10:0001/28/19 10:007440-42-88260 MSV Low Level LandfillAnalytical Method:EPA 7470APreparatomethod:001/28/19 10:00749-96-0749-96-08620 MSV Low Level LandfillNDug/L2.50101/28/19 10:00749-97-0749-97-08620 MSV Low Level LandfillNDug/L2.50101/28/19 10:00749-75749-758620 MSV Low Level LandfillNDug/L1.00101/28/19 10:00749-758620 MSV Low Level LandfillNDug/L1.00	Vanadium	7.6		5.0	1	01/26/19 07:42	01/28/19 00:12	7440-62-2	
Boron 39.1 ug/L 25.0 1 01/26/19 10:00 01/29/19 12:34 7440-42-8 Lithium 94.1 ug/L 2.5 1 01/26/19 10:00 01/29/19 12:34 7439-93-2 Thallium ND ug/L 0.10 1 01/26/19 10:00 01/28/19 21:38 7440-42-8 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A 7470A Mercury ND ug/L 0.20 1 01/28/19 21:37 7439-97-6 8260 MSV Low Level Landfill Analytical Method: EPA 8260B 7439-97-6 Acetone ND ug/L 1.0 01/28/19 16:08 67-64-1 Acrylonitrile ND ug/L 1.0 1 01/28/19 16:08 74-32 Bromodichloromethane ND ug/L 1.0 1 01/28/19 16:08 75-27-4 Bromodorichloromethane ND ug/L 1.0 1 01/28/19 16:08 75-27-2 Bromodorichloromethane ND ug/L<	Zinc	31.1	-	10.0	1	01/26/19 07:42	01/28/19 00:12	7440-66-6	
Lithium94.1 NDug/L ug/L2.5 0.10101/26/19 10:0001/29/19 12:347439-93-2ThalliumNDug/L0.10101/26/19 10:0001/28/19 21:387440-28-07470 MercuryNDug/LPreparatorVertow01/28/19 21:2701/29/19 13:017439-97-68260 MSV Low Level LandfillAnalytical Metro:EPA 8260B01/28/19 11:0867-64-1AcetoneNDug/L25.0101/28/19 16:0867-64-1AcetoneNDug/L1.0101/28/19 16:0871-33-1BenzeneNDug/L1.0101/28/19 16:0871-43-2BromochloromethaneNDug/L1.0101/28/19 16:0875-27-4BromochloromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L2.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-03-0Carbon disulfideNDug/L1.0101/28/19 16:0875-03-0ChlorobenzeneNDug/L1.0101/28/19 16:0875-03-0ChlorobenzeneNDug/L<	6020 MET ICPMS	Analytical Met	hod: EPA 60	20B Preparation Me	ethod: E	PA 3010A			
Lithium94.1 NDug/L ug/L2.5 0.10101/26/19 10:0001/29/19 12:347439-93-2ThalliumNDug/L0.10101/26/19 10:0001/28/19 21:387440-28-07470 MercuryNDug/LPreparatorVertow01/28/19 21:2701/29/19 13:017439-97-68260 MSV Low Level LandfillAnalytical Metro:EPA 8260B01/28/19 11:0867-64-1AcetoneNDug/L25.0101/28/19 16:0867-64-1AcetoneNDug/L1.0101/28/19 16:0871-33-1BenzeneNDug/L1.0101/28/19 16:0871-43-2BromochloromethaneNDug/L1.0101/28/19 16:0875-27-4BromochloromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L2.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-27-4BromochoromethaneNDug/L1.0101/28/19 16:0875-03-0Carbon disulfideNDug/L1.0101/28/19 16:0875-03-0ChlorobenzeneNDug/L1.0101/28/19 16:0875-03-0ChlorobenzeneNDug/L<	Boron	30 1	ua/l	25.0	1	01/26/19 10:00	01/20/10 12:34	7440-42-8	
ThalliumNDug/L0.1010/26/1910:000/128/1912:187440-8-07470 MercuryAnalytical Method: EPA 7470 A PreparativeEPA 47000000/28/1912:270/129/1913:017439-9768260 MSV Low Level LandfillAnalytical Method: EPA 8260BEPA 8260B00/128/1916:08676-13AcctoonNDug/L10.0101/28/1916:0810-13-13BenzeneNDug/L10.0101/28/1916:0871-43-2BromochloromethaneNDug/L1.0101/28/1916:0872-74BromodichloromethaneNDug/L1.0101/28/1916:0872-74BromodichloromethaneNDug/L1.0101/28/1916:0872-74BromodichloromethaneNDug/L1.0101/28/1916:0872-74BromodichloromethaneNDug/L1.0101/28/1916:0872-74BromodichloromethaneNDug/L1.0101/28/1916:0874-93-3Carbon disulfideNDug/L1.0101/28/1916:0874-93-3Carbon disulfideNDug/L1.0101/28/1916:0874-93-3ChloromethaneNDug/L1.0101/28/1916:0874-93-3ChlorothaneNDug/L1.0101/28/1916:0874-93-3ChlorothaneNDug/L1.0101/28/1916:0874-93-3ChlorothaneNDug/L1									
Analytical Method: EPA 7470A Preparation Method: EPA 7470A Mercury ND ug/L 0.20 1 01/28/19 21.27 01/29/19 13:01 7439-97-6 8260 MSV Low Level Landfill Analytical Method: EPA 8260BE 01/28/19 16:08 67-64-1 Acetone ND ug/L 10.0 1 01/28/19 16:08 67-64-1 Acetone ND ug/L 1.0 1 01/28/19 16:08 71-3-1 Benzene ND ug/L 1.0 1 01/28/19 16:08 74-97-5 Bromochloromethane ND ug/L 1.0 1 01/28/19 16:08 75-27-4 Bromochthane ND ug/L 1.0 1 01/28/19 16:08 75-27-4 Bromochthane ND ug/L 2.0 1 01/28/19 16:08 75-27-4 Bromochthane ND ug/L 2.0 1 01/28/19 16:08 75-57-2 Bromochthane ND ug/L 2.0 1 01/28/19 16:08 74-83									
Mercury ND ug/L 0.20 1 01/28/19 21:27 01/29/19 13:01 7439-97-6 8260 MSV Low Level Landfill Analytical Method: EPA 8260B EPA 8260B Acctone ND ug/L 25.0 1 01/28/19 16:08 67-64-1 Acctone ND ug/L 10.0 1 01/28/19 16:08 67-64-1 Senzene ND ug/L 1.0 1 01/28/19 16:08 77-13-1 Bromochloromethane ND ug/L 1.0 1 01/28/19 16:08 77-43-2 Bromochloromethane ND ug/L 1.0 1 01/28/19 16:08 75-25-2 Bromochloromethane ND ug/L 2.0 1 01/28/19 16:08 75-25-2 Bromochloromethane ND ug/L 5.0 1 01/28/19 16:08 75-25-2 Bromochloromethane ND ug/L 5.0 1 01/28/19 16:08 75-97-3 Carbon disulfide ND ug/L 1.0 1 01/28/19 16:08 <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			-						
Acetone ND ug/L 25.0 1 01/28/19 16:08 67-64-1 Acrylonitrile ND ug/L 10.0 1 01/28/19 16:08 107-13-1 Benzene ND ug/L 1.0 1 01/28/19 16:08 71-43-2 Bromochloromethane ND ug/L 1.0 1 01/28/19 16:08 74-97-5 Bromodichloromethane ND ug/L 1.0 1 01/28/19 16:08 75-27-4 Bromodithloromethane ND ug/L 1.0 1 01/28/19 16:08 75-25-2 Bromomethane ND ug/L 2.0 1 01/28/19 16:08 75-25-2 Bromotifue ND ug/L 2.0 1 01/28/19 16:08 75-25-2 Bromotifue ND ug/L 2.0 1 01/28/19 16:08 75-15-0 Carbon disulfide ND ug/L 1.0 1 01/28/19 16:08 75-00-3 Chlorobenzene ND ug/L 1.0 1 01/28/19 16:08	-	·					01/29/19 13:01	7439-97-6	
AcrylonitrileNDug/L10.0101/28/19 16:08107-13-1BenzeneNDug/L1.0101/28/19 16:0871-43-2BromochloromethaneNDug/L1.0101/28/19 16:0874-97-5BromodichloromethaneNDug/L1.0101/28/19 16:0875-27-4BromoformNDug/L1.0101/28/19 16:0875-25-2BromomethaneNDug/L2.0101/28/19 16:0875-25-2BromomethaneNDug/L5.0101/28/19 16:0875-25-2Carbon disulfideNDug/L5.0101/28/19 16:0875-15-0Carbon disulfideNDug/L1.0101/28/19 16:0875-15-0Carbon tetrachlorideNDug/L1.0101/28/19 16:0875-03ChlorobenzeneNDug/L1.0101/28/19 16:0875-03ChloroothaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3J_2-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-3J_2-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-3J_2-Dichloroben	8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	60B					
AcrylonitrileNDug/L10.0101/28/19 16:08107-13-1BenzeneNDug/L1.0101/28/19 16:0871-43-2BromochloromethaneNDug/L1.0101/28/19 16:0874-97-5BromodichloromethaneNDug/L1.0101/28/19 16:0875-27-4BromoformNDug/L1.0101/28/19 16:0875-25-2BromomethaneNDug/L2.0101/28/19 16:0875-25-2BromomethaneNDug/L5.0101/28/19 16:0875-25-2BromomethaneNDug/L5.0101/28/19 16:0875-25-2Carbon disulfideNDug/L5.0101/28/19 16:0875-15-0Carbon disulfideNDug/L1.0101/28/19 16:0875-15-0ChlorobenzeneNDug/L1.0101/28/19 16:0875-03-3ChlorotormNDug/L1.0101/28/19 16:0875-03-3ChlorotormNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-3J_2-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-3J_2-DichlorobenzeneND	Acetone	ND	ug/L	25.0	1		01/28/19 16:08	67-64-1	
Benzene ND ug/L 1.0 1 01/28/19 16:08 71-43-2 Bromochloromethane ND ug/L 1.0 1 01/28/19 16:08 74-97-5 Bromodichloromethane ND ug/L 1.0 1 01/28/19 16:08 75-27-4 Bromoform ND ug/L 1.0 1 01/28/19 16:08 75-25-2 Bromomethane ND ug/L 2.0 1 01/28/19 16:08 74-83-9 2-Butanone (MEK) ND ug/L 2.0 1 01/28/19 16:08 78-93-3 Carbon disulfide ND ug/L 2.0 1 01/28/19 16:08 75-50-2 Carbon tetrachloride ND ug/L 2.0 1 01/28/19 16:08 75-93-3 Chlorobenzene ND ug/L 1.0 1 01/28/19 16:08 75-03-3 Chlorobenzene ND ug/L 1.0 1 01/28/19 16:08 75-03-3 Chloroform ND ug/L 1.0 1 01/28/19	Acrylonitrile	ND	-	10.0	1		01/28/19 16:08	107-13-1	
BromochloromethaneNDug/L1.0101/28/19 16:0874-97-5BromodichloromethaneNDug/L1.0101/28/19 16:0875-27-4BromoformNDug/L1.0101/28/19 16:0875-25-2BromomethaneNDug/L2.0101/28/19 16:0874-83-92-Butanone (MEK)NDug/L5.0101/28/19 16:0878-93-3Carbon disulfideNDug/L2.0101/28/19 16:0875-15-0Carbon tetrachlorideNDug/L1.0101/28/19 16:0856-23-5ChlorobenzeneNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6	-		-						
BromodichloromethaneNDug/L1.0101/28/19 16:0875-27-4BromoformNDug/L1.0101/28/19 16:0875-25-2BromomethaneNDug/L2.0101/28/19 16:0874-83-92-Butanone (MEK)NDug/L5.0101/28/19 16:0875-93-3Carbon disulfideNDug/L2.0101/28/19 16:0875-15-0Carbon tetrachlorideNDug/L1.0101/28/19 16:0856-23-5ChlorobenzeneNDug/L1.0101/28/19 16:0875-00-3ChlorotformNDug/L1.0101/28/19 16:0875-00-3ChloromethaneNDug/L1.0101/28/19 16:0875-00-3ChloromethaneNDug/L1.0101/28/19 16:0875-00-3ChloromethaneNDug/L1.0101/28/19 16:0876-6-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromomethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6 <td>Bromochloromethane</td> <td></td> <td>-</td> <td>1.0</td> <td>1</td> <td></td> <td>01/28/19 16:08</td> <td>74-97-5</td> <td></td>	Bromochloromethane		-	1.0	1		01/28/19 16:08	74-97-5	
BromoformNDug/L1.0101/28/19 16:0875-25-2BromomethaneNDug/L2.0101/28/19 16:0874-83-92-Butanone (MEK)NDug/L5.0101/28/19 16:0878-93-3Carbon disulfideNDug/L2.0101/28/19 16:0875-15-0Carbon tetrachlorideNDug/L1.0101/28/19 16:0856-23-5ChlorobenzeneNDug/L1.0101/28/19 16:0875-00-3ChlorothaneNDug/L1.0101/28/19 16:0875-00-3ChlorothaneNDug/L1.0101/28/19 16:0875-00-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-87-3J.2-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-31,4-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6	Bromodichloromethane	ND	-	1.0	1		01/28/19 16:08	75-27-4	
BromomethaneNDug/L2.0101/28/19 16:0874-83-92-Butanone (MEK)NDug/L5.0101/28/19 16:0878-93-3Carbon disulfideNDug/L2.0101/28/19 16:0875-15-0Carbon tetrachlorideNDug/L1.0101/28/19 16:0856-23-5ChlorobenzeneNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L1.0101/28/19 16:0875-60-3ChloroformNDug/L5.0101/28/19 16:0874-87-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-31,4-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-31,4-DichlorobenzeneNDug/L1.0101/28/19 16:0874-95-31,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08106-46-7	Bromoform	ND	-	1.0	1		01/28/19 16:08	75-25-2	
2-Butanone (MEK)NDug/L5.0101/28/19 16:0878-93-3Carbon disulfideNDug/L2.0101/28/19 16:0875-15-0Carbon tetrachlorideNDug/L1.0101/28/19 16:0856-23-5ChlorobenzeneNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L5.0101/28/19 16:0874-87-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-3JibromochloromethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08105-76	Bromomethane	ND	-	2.0	1		01/28/19 16:08	74-83-9	
Carbon disulfideNDug/L2.0101/28/19 16:0875-15-0Carbon tetrachlorideNDug/L1.0101/28/19 16:0856-23-5ChlorobenzeneNDug/L1.0101/28/19 16:0875-00-3ChloroethaneNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L5.0101/28/19 16:0867-66-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:08124-48-1DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6	2-Butanone (MEK)	ND		5.0	1				
Carbon tetrachlorideNDug/L1.0101/28/19 16:0856-23-5ChlorobenzeneNDug/L1.0101/28/19 16:08108-90-7ChloroethaneNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L5.0101/28/19 16:0867-66-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:08124-48-1DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6	. ,	ND	-	2.0	1		01/28/19 16:08	75-15-0	
ChlorobenzeneNDug/L1.0101/28/19 16:08108-90-7ChloroethaneNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L5.0101/28/19 16:0867-66-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:08124-48-1DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6	Carbon tetrachloride	ND	-	1.0	1		01/28/19 16:08	56-23-5	
ChloroethaneNDug/L1.0101/28/19 16:0875-00-3ChloroformNDug/L5.0101/28/19 16:0867-66-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6					1				
ChloroformNDug/L5.0101/28/19 16:0867-66-3ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:08124-48-1DibromomethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6	Chloroethane		-		1				
ChloromethaneNDug/L1.0101/28/19 16:0874-87-3DibromochloromethaneNDug/L1.0101/28/19 16:08124-48-1DibromomethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6			-		1				
DibromochloromethaneNDug/L1.0101/28/19 16:08124-48-1DibromomethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6			-						
DibromomethaneNDug/L1.0101/28/19 16:0874-95-31,2-DichlorobenzeneNDug/L1.0101/28/19 16:0895-50-11,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6			-						
ND ug/L 1.0 1 01/28/19 16:08 95-50-1 1,4-Dichlorobenzene ND ug/L 1.0 1 01/28/19 16:08 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 1.0 1 01/28/19 16:08 106-46-7			-						
1,4-DichlorobenzeneNDug/L1.0101/28/19 16:08106-46-7trans-1,4-Dichloro-2-buteneNDug/L1.0101/28/19 16:08110-57-6			-						
trans-1,4-Dichloro-2-butene ND ug/L 1.0 1 01/28/19 16:08 110-57-6			-						
			-						
	1,1-Dichloroethane	ND	ug/L	1.0	1				

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-2	Lab ID: 924	15385008	Collected: 01/23/1	9 08:40	Received: 0)1/25/19 12:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260B					
1,2-Dichloroethane	ND	ug/L	1.0	1		01/28/19 16:08	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		01/28/19 16:08	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 16:08	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 16:08	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		01/28/19 16:08	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 16:08	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 16:08	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		01/28/19 16:08	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		01/28/19 16:08	591-78-6	
lodomethane	ND	ug/L	20.0	1		01/28/19 16:08	74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 16:08	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/28/19 16:08	108-10-1	
Styrene	ND	ug/L	1.0	1		01/28/19 16:08	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 16:08	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 16:08	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		01/28/19 16:08	127-18-4	
Toluene	ND	ug/L	1.0	1		01/28/19 16:08	108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/28/19 16:08	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/28/19 16:08	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		01/28/19 16:08	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		01/28/19 16:08	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		01/28/19 16:08	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		01/28/19 16:08		
Vinyl chloride	ND	ug/L	1.0	1		01/28/19 16:08		
Xylene (Total)	ND	ug/L	1.0	1		01/28/19 16:08		
Surrogates		- 9 -		-				
4-Bromofluorobenzene (S)	100	%	70-130	1		01/28/19 16:08	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1		01/28/19 16:08	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		01/28/19 16:08	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	2590	mg/L	250	1		01/25/19 23:32		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	1200	mg/L	15.0	15		01/31/19 11:20	16887-00-6	
Fluoride	0.26	mg/L	0.10	1		01/31/19 01:13	16984-48-8	
Sulfate	130	mg/L	15.0	15		01/31/19 11:20	14808-79-8	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-8	Lab ID: 924	15385009	Collected: 01/23/1	9 11:00	Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0D Preparation Me	thod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:16	7440-38-2	
Barium	1170	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:16	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:16	7440-43-9	
Calcium	110000	ug/L	500	5	01/26/19 07:42	01/28/19 23:34	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:16	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:16	7782-49-2	
Silver	ND	ug/L	5.0	1		01/28/19 00:16		
Vanadium	ND	ug/L	5.0	1		01/28/19 00:16	-	
Zinc	13.6	ug/L	10.0	1		01/28/19 00:16		
6020 MET ICPMS	Analytical Mether	nod: EPA 602	20B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/19 10:00	01/29/19 12:37	7440-42-8	
Lithium	21.7	ug/∟ ug/L	23.0	1		01/29/19 12:37		
Thallium	ND	ug/L ug/L	0.10	1		01/28/19 21:41		
		-				01/20/19 21.41	7440-20-0	
7470 Mercury			'0A Preparation Me					
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 13:03	7439-97-6	
8260 MSV Low Level Landfill	Analytical Mether	nod: EPA 826	60B					
Acetone	ND	ug/L	25.0	1		01/28/19 16:25	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 16:25		
Benzene	ND	ug/L	1.0	1		01/28/19 16:25		
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 16:25		
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 16:25	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 16:25	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 16:25	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 16:25		
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 16:25	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 16:25	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 16:25	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 16:25	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/28/19 16:25	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 16:25	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 16:25	124-48-1	
Dibromomethane		ug/L	1.0	1		01/28/19 16:25	74-95-3	
Distonitionethane	ND	ug/L	1.0					
1,2-Dichlorobenzene	ND ND	ug/L	1.0	1		01/28/19 16:25	95-50-1	
		-		1 1		01/28/19 16:25 01/28/19 16:25		
1,2-Dichlorobenzene	ND	ug/L	1.0				106-46-7	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-8	Lab ID: 924	15385009	Collected: 01/23/1	9 11:00	Received: 0	1/25/19 12:00 N	Aatrix: Water	r
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260B					
1,2-Dichloroethane	ND	ug/L	1.0	1		01/28/19 16:25	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		01/28/19 16:25	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 16:25	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 16:25	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		01/28/19 16:25	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 16:25	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 16:25	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		01/28/19 16:25	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		01/28/19 16:25	591-78-6	
lodomethane	ND	ug/L	20.0	1		01/28/19 16:25	74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 16:25	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/28/19 16:25	108-10-1	
Styrene	ND	ug/L	1.0	1		01/28/19 16:25	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 16:25	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 16:25		
Tetrachloroethene	ND	ug/L	1.0	1		01/28/19 16:25		
Toluene	ND	ug/L	1.0	1		01/28/19 16:25	-	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/28/19 16:25		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/28/19 16:25		
Trichloroethene	ND	ug/L	1.0	1		01/28/19 16:25		
Trichlorofluoromethane	ND	ug/L	1.0	1		01/28/19 16:25		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		01/28/19 16:25		
Vinyl acetate	ND	ug/L	2.0	1		01/28/19 16:25		
Vinyl chloride	ND	ug/L	1.0	1		01/28/19 16:25		
Xylene (Total)	ND	-	1.0	1		01/28/19 16:25		
Surrogates	ND	ug/L	1.0	I		01/20/19 10.25	1330-20-7	
4-Bromofluorobenzene (S)	94	%	70-130	1		01/28/19 16:25	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130	1		01/28/19 16:25		
Toluene-d8 (S)	101	%	70-130	1		01/28/19 16:25		
	100	70	70-130	I		01/20/19 10.25	2037-20-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	814	mg/L	50.0	1		01/25/19 23:32		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	377	mg/L	8.0	8		01/31/19 11:37	16887-00-6	M6
Fluoride	ND	mg/L	0.10	1		01/31/19 02:19	16984-48-8	
Sulfate	7.9	mg/L	1.0	1		01/31/19 02:19	14808-79-8	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

ParametersResultsUnitsReport LimitDFPreparedAnalyzedCAS No.6010 MET ICPAnalytical Method: EPA 6010DPreparation Method: EPA 3010AAntimonyNDug/L5.0101/26/19 07:4201/28/19 00:197440-36-0ArsenicNDug/L10.0101/26/19 07:4201/28/19 00:197440-38-2Barium89.7ug/L5.0101/26/19 07:4201/28/19 00:197440-39-3BerylliumNDug/L1.0101/26/19 07:4201/28/19 00:197440-49-39-3CadmiumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9CalciumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9CalciumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197439-92-1MolybelenumNDug/L5.0101/26/19 07:4201/28/19 00:197439-92-1	r
AntimonyNDug/L5.0101/26/19 07:4201/28/19 00:197440-36-0ArsenicNDug/L10.0101/26/19 07:4201/28/19 00:197440-38-2Barium89.7ug/L5.0101/26/19 07:4201/28/19 00:197440-39-3BerylliumNDug/L1.0101/26/19 07:4201/28/19 00:197440-41-7CadmiumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9Calcium34400ug/L1.0101/26/19 07:4201/28/19 00:197440-43-9Chromium5.3ug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8	. Qual
ArsenicNDug/L10.0101/26/19 07:4201/28/19 00:197440-38-2Barium89.7ug/L5.0101/26/19 07:4201/28/19 00:197440-39-3BerylliumNDug/L1.0101/26/19 07:4201/28/19 00:197440-41-7CadmiumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9Calcium34400ug/L1.0101/26/19 07:4201/28/19 00:197440-43-9Chromium5.3ug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8	
Barium89.7ug/L5.0101/26/19 07:4201/28/19 00:197440-39-3BerylliumNDug/L1.0101/26/19 07:4201/28/19 00:197440-41-7CadmiumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9Calcium34400ug/L100101/26/19 07:4201/28/19 00:197440-70-2Chromium5.3ug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8	
BerylliumNDug/L1.0101/26/19 07:4201/28/19 00:197440-41-7CadmiumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9Calcium34400ug/L100101/26/19 07:4201/28/19 00:197440-47-2Chromium5.3ug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197439-92-1	
CadmiumNDug/L1.0101/26/19 07:4201/28/19 00:197440-43-9Calcium34400ug/L100101/26/19 07:4201/28/19 00:197440-70-2Chromium5.3ug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197439-92-1	
Calcium34400ug/L100101/26/19 07:4201/28/19 00:197440-70-2Chromium5.3ug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197439-92-1	
Chromium5.3ug/L5.0101/26/19 07:4201/28/19 00:197440-47-3CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197439-92-1	
CobaltNDug/L5.0101/26/19 07:4201/28/19 00:197440-48-4CopperNDug/L5.0101/26/19 07:4201/28/19 00:197440-50-8LeadNDug/L5.0101/26/19 07:4201/28/19 00:197439-92-1	
Copper ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:19 7440-50-8 Lead ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:19 7439-92-1	
Lead ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:19 7439-92-1	
5	
Molvbdenum ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:19 7439-98-7	
Nickel ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:19 7440-02-0	
Selenium ND ug/L 10.0 1 01/26/19 07:42 01/28/19 00:19 7782-49-2	
Silver ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:19 7440-22-4	
Vanadium ND ug/L 5.0 1 01/26/19 07:42 01/28/19 00:19 7440-62-2	
Zinc 17.7 ug/L 10.0 1 01/26/19 07:42 01/28/19 00:19 7440-66-6	
6020 MET ICPMS Analytical Method: EPA 6020B Preparation Method: EPA 3010A	
Boron ND ug/L 25.0 1 01/26/19 10:00 01/29/19 12:40 7440-42-8	
Lithium 27.9 ug/L 2.5 1 01/26/19 10:00 01/29/19 12:40 7439-93-2	
Thallium ND ug/L 0.10 1 01/26/19 10:00 01/28/19 21:45 7440-28-0	
7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A	
Mercury ND ug/L 0.20 1 01/28/19 21:27 01/29/19 13:05 7439-97-6	
8260 MSV Low Level Landfill Analytical Method: EPA 8260B	
Acetone ND ug/L 25.0 1 01/28/19 16:43 67-64-1	
Acrylonitrile ND ug/L 10.0 1 01/28/19 16:43 107-13-1	
Benzene ND ug/L 1.0 1 01/28/19 16:43 71-43-2	
Bromochloromethane ND ug/L 1.0 1 01/28/19 16:43 74-97-5	
Bromodichloromethane ND ug/L 1.0 1 01/28/19 16:43 75-27-4	
Bromoform ND ug/L 1.0 1 01/28/19 16:43 75-25-2	
Bromomethane ND ug/L 2.0 1 01/28/19 16:43 74-83-9	
2-Butanone (MEK) ND ug/L 5.0 1 01/28/19 16:43 78-93-3	
Carbon disulfide ND ug/L 2.0 1 01/28/19 16:43 75-15-0	
Carbon tetrachloride ND ug/L 1.0 1 01/28/19 16:43 56-23-5	
Chlorobenzene ND ug/L 1.0 1 01/28/19 16:43 108-90-7	
Chloroethane ND ug/L 1.0 1 01/28/19 16:43 75-00-3	
Chloroform ND ug/L 5.0 1 01/28/19 16:43 67-66-3	
Chloromethane ND ug/L 1.0 1 01/28/19 16:43 74-87-3	
Dibromochloromethane ND ug/L 1.0 1 01/28/19 16:43 124-48-1	
Dibromomethane ND ug/L 1.0 1 01/28/19 16:43 74-95-3	
1,2-Dichlorobenzene ND ug/L 1.0 1 01/28/19 16:43 95-50-1	
1,4-Dichlorobenzene ND ug/L 1.0 1 01/28/19 16:43 106-46-7	
trans-1,4-Dichloro-2-butene ND ug/L 1.0 1 01/28/19 16:43 110-57-6	
1,1-Dichloroethane ND ug/L 1.0 1 01/28/19 16:43 75-34-3	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-6	Lab ID: 924	15385010	Collected: 01/23/1	9 13:50	Received: 01/25/19 12:00 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	260B			
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28/19 16:43 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28/19 16:43 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 16:43 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 16:43 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28/19 16:43 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 16:43 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 16:43 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1	01/28/19 16:43 100-41-4	
2-Hexanone	ND	ug/L	5.0	1	01/28/19 16:43 591-78-6	
lodomethane	ND	ug/L	20.0	1	01/28/19 16:43 74-88-4	
Methylene Chloride	ND	ug/L	5.0	1	01/28/19 16:43 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28/19 16:43 108-10-1	
Styrene	ND	ug/L	1.0	1	01/28/19 16:43 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 16:43 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 16:43 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1	01/28/19 16:43 127-18-4	
Toluene	ND	ug/L	1.0	1	01/28/19 16:43 108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28/19 16:43 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28/19 16:43 79-00-5	
Trichloroethene	ND	ug/L	1.0	1	01/28/19 16:43 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1	01/28/19 16:43 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	01/28/19 16:43 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1	01/28/19 16:43 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1	01/28/19 16:43 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1	01/28/19 16:43 1330-20-7	
Surrogates		ug/L	1.0		01/20/10/10/10/1000/20/1	
4-Bromofluorobenzene (S)	95	%	70-130	1	01/28/19 16:43 460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130	1	01/28/19 16:43 17060-07-0	
Toluene-d8 (S)	99	%	70-130	1	01/28/19 16:43 2037-26-5	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C-2011			
Total Dissolved Solids	649	mg/L	25.0	1	01/26/19 01:25	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	00.0 Rev 2.1 1993			
Chloride	229	mg/L	5.0	5	01/31/19 13:15 16887-00-6	
Fluoride	0.40	mg/L	0.10	1	01/31/19 03:09 16984-48-8	
Sulfate	48.7	mg/L	1.0	1	01/31/19 03:09 14808-79-8	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: DUP	Lab ID: 924	15385011	Collected: 01/23/1	9 12:50	Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metl	hod: EPA 601	10D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:22	7440-38-2	
Barium	90.4	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:22	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:22	7440-43-9	
Calcium	35200	ug/L	100	1	01/26/19 07:42	01/28/19 00:22	7440-70-2	
Chromium	5.2	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:22	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:22	7782-49-2	
Silver	ND	ug/L	5.0	1		01/28/19 00:22		
Vanadium	ND	ug/L	5.0	1		01/28/19 00:22		
Zinc	17.5	ug/L	10.0	1		01/28/19 00:22		
6020 MET ICPMS	Analytical Met	hod: EPA 602	20B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/10 10:00	01/29/19 12:43	7440-42-8	
Lithium	28.6	ug/L	2.5	1		01/29/19 12:43		
Thallium	ND	ug/L	0.10	1		01/28/19 21:48		
7470 Mercury		-	70A Preparation Me			01/20/10 21.40	1440 20 0	
Mercury	ND	ug/L	0.20	1		01/29/19 13:08	7439-97-6	
8260 MSV Low Level Landfill	Analytical Met	-		·	0 1/20/ 10 2 1121	0.,20,10 10.00		
	•			4		01/20/10 17:00	67.64.4	
Acetone	ND	ug/L	25.0	1 1		01/28/19 17:00		
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 17:00		
Benzene Bromochloromethane	ND ND	ug/L	1.0 1.0	1		01/28/19 17:00 01/28/19 17:00		
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 17:00		
Bromoform		ug/L		1				
	ND	ug/L	1.0	1		01/28/19 17:00 01/28/19 17:00		
Bromomethane	ND ND	ug/L	2.0 5.0	1		01/28/19 17:00		
2-Butanone (MEK) Carbon disulfide		ug/L	2.0	1				
	ND	ug/L				01/28/19 17:00		
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 17:00		
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 17:00		
Chloroethane	ND	ug/L	1.0	1		01/28/19 17:00		
Chloroform	ND	ug/L	5.0	1		01/28/19 17:00		
Chloromethane	ND	ug/L	1.0	1		01/28/19 17:00		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 17:00		
Dibromomethane	ND	ug/L	1.0	1		01/28/19 17:00		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:00		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:00		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 17:00		
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 17:00	75-34-3	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: DUP	Lab ID: 924	15385011	Collected: 01/23/1	9 12:50	Received: 0	01/25/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260B					
1,2-Dichloroethane	ND	ug/L	1.0	1		01/28/19 17:00	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		01/28/19 17:00	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 17:00	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 17:00	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		01/28/19 17:00	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 17:00	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 17:00	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		01/28/19 17:00	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		01/28/19 17:00	591-78-6	
lodomethane	ND	ug/L	20.0	1		01/28/19 17:00	74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 17:00	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/28/19 17:00	108-10-1	
Styrene	ND	ug/L	1.0	1		01/28/19 17:00	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 17:00		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 17:00		
Tetrachloroethene	ND	ug/L	1.0	1		01/28/19 17:00		
Toluene	ND	ug/L	1.0	1		01/28/19 17:00		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/28/19 17:00		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/28/19 17:00		
Trichloroethene	ND	ug/L	1.0	1		01/28/19 17:00		
Trichlorofluoromethane	ND	ug/L	1.0	1		01/28/19 17:00		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		01/28/19 17:00		
Vinyl acetate	ND	ug/L	2.0	1		01/28/19 17:00		
Vinyl chloride	ND	ug/L	1.0	1		01/28/19 17:00		
Xylene (Total)	ND	ug/L	1.0	1		01/28/19 17:00		
Surrogates	NB	ug/L	1.0	•		01/20/10 11:00	1000 20 7	
4-Bromofluorobenzene (S)	98	%	70-130	1		01/28/19 17:00	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130	1		01/28/19 17:00	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		01/28/19 17:00		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 25	40C-2011					
Total Dissolved Solids	649	mg/L	25.0	1		01/26/19 01:27		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	228	mg/L	5.0	5		01/31/19 13:31	16887-00-6	
Fluoride	0.39	mg/L	0.10	1		01/31/19 03:26		
Sulfate	49.3	mg/L	1.0	1		01/31/19 03:26		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-5	Lab ID: 924	15385012	Collected: 01/24/1	9 08:50	0 Received: 01	/25/19 12:00 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 6010	D Preparation Me	ethod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:31	7440-38-2	
Barium	123	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:31	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:31	7440-43-9	
Calcium	13700	ug/L	100	1	01/26/19 07:42	01/28/19 00:31	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:31	7782-49-2	
Silver	ND	ug/L	5.0	1		01/28/19 00:31		
Vanadium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:31	7440-62-2	
Zinc	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:31	7440-66-6	
6020 MET ICPMS	Analytical Met	-	B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/19 10:00	01/29/19 12:46	7440-42-8	
Lithium	8.0	ug/L	2.5	1		01/29/19 12:46		
Thallium	ND	ug/L	0.10	1		01/28/19 21:52		
7470 Mercury			A Preparation Me			01/20/10 21.02	1440 20 0	
Mercury	ND	ug/L	0.20	1		01/29/19 13:10	7439-97-6	
8260 MSV Low Level Landfill	Analytical Met	-						
Acetone	ND	ug/L	25.0	1		01/28/19 17:17	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 17:17		
Benzene	ND	ug/L	1.0	1		01/28/19 17:17		
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 17:17		
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 17:17		
Bromoform	ND	ug/L	1.0	1		01/28/19 17:17		
Bromomethane	ND	ug/L	2.0	1		01/28/19 17:17		
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 17:17		
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 17:17		
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 17:17		
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 17:17		
Chloroethane	ND	ug/L	1.0	1		01/28/19 17:17		
Chloroform	ND	ug/L	5.0	1		01/28/19 17:17		
Chloromethane	ND	ug/L	1.0	1		01/28/19 17:17		
Dibromochloromethane	ND	-	1.0	1		01/28/19 17:17		
		ug/L						
Dibromomethane	ND	ug/L	1.0	1		01/28/19 17:17		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:17		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:17		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 17:17		
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 17:17	10-04-0	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-5	Lab ID: 924	15385012	Collected: 01/24/1	9 08:50	Received: 01/25/19	9 12:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared A	nalyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	260B					
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28	8/19 17:17	7 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28	8/19 17:17	7 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28	8/19 17:17	7 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28	8/19 17:17	7 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28	8/19 17:17	7 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28	8/19 17:17	7 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28	8/19 17:17	7 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1	01/28	8/19 17:17	7 100-41-4	
2-Hexanone	ND	ug/L	5.0	1	01/28	8/19 17:17	7 591-78-6	
lodomethane	ND	ug/L	20.0	1	01/28	8/19 17:17	7 74-88-4	
Methylene Chloride	ND	ug/L	5.0	1	01/28	8/19 17:17	7 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28	8/19 17:17	7 108-10-1	
Styrene	ND	ug/L	1.0	1			7 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28	8/19 17:17	7 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1			7 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1			7 127-18-4	
Toluene	ND	ug/L	1.0	1			7 108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28	8/19 17:17	7 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28	8/19 17:17	7 79-00-5	
Trichloroethene	ND	ug/L	1.0	1			7 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1			7 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1			7 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1			7 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1			7 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1			7 1330-20-7	
Surrogates				•	0.72			
4-Bromofluorobenzene (S)	97	%	70-130	1	01/28	8/19 17:17	7 460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-130	1	01/28	8/19 17:17	7 17060-07-0	
Toluene-d8 (S)	100	%	70-130	1	01/28	8/19 17:17	7 2037-26-5	
2540C Total Dissolved Solids	Analytical Met	hod: SM 25	40C-2011					
Total Dissolved Solids	261	mg/L	25.0	1	01/29	9/19 15:06	6	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	00.0 Rev 2.1 1993					
Chloride	22.2	mg/L	1.0	1	01/3	1/19 03:42	2 16887-00-6	
Fluoride	0.57	mg/L	0.10	1	01/3 [,]	1/19 03:42	2 16984-48-8	
Sulfate	2.9	mg/L	1.0	1	01/3	1/19 03:42	2 14808-79-8	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-1	Lab ID: 924	15385013	Collected: 01/24/	9 11:00	Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0D Preparation M	ethod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:34	7440-38-2	
Barium	242	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:34	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:34	7440-43-9	
Calcium	205000	ug/L	500	5	01/26/19 07:42	01/28/19 23:37	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7439-98-7	
Nickel	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:34	7782-49-2	
Silver	ND	ug/L	5.0	1		01/28/19 00:34		
Vanadium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:34	7440-62-2	
Zinc	14.7	ug/L	10.0	1		01/28/19 00:34		
6020 MET ICPMS	Analytical Mether	•	0B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/10 10:00	01/29/19 12:49	7440-42-8	
Lithium	30.9	ug/L	2.5	1		01/29/19 12:49		
Thallium	ND	ug/L	0.10	1		01/28/19 21:55		
7470 Mercury		-	OA Preparation Me			01/20/10 21:00	7440 20 0	
Mercury	ND	ug/L	0.20	1		01/29/19 13:12	7439-97-6	
		-			01/20/19 21.27	01/23/13 13.12	1439-91-0	
8260 MSV Low Level Landfill	Analytical Meth							
Acetone	ND	ug/L	25.0	1		01/28/19 17:34		
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 17:34		
Benzene	ND	ug/L	1.0	1		01/28/19 17:34		
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 17:34		
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 17:34	-	
Bromoform	ND	ug/L	1.0	1		01/28/19 17:34		
Bromomethane	ND	ug/L	2.0	1		01/28/19 17:34		
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 17:34		
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 17:34		
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 17:34		
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 17:34		
Chloroethane	ND	ug/L	1.0	1		01/28/19 17:34		
Chloroform	ND	ug/L	5.0	1		01/28/19 17:34		
Chloromethane	ND	ug/L	1.0	1		01/28/19 17:34		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 17:34		
Dibromomethane	ND	ug/L	1.0	1		01/28/19 17:34		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:34		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:34		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 17:34		
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 17:34	75-34-3	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-1	Lab ID: 92	2415385013	Collected: 01/24/1	9 11:00	Received: 01/25/19 12:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyze	ed CAS No.	Qual
8260 MSV Low Level Landfill	Analytical M	ethod: EPA 82	260B				
1,2-Dichloroethane	ND	ug/L	1.0	1	01/28/19 1	7:34 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1	01/28/19 1	7:34 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 1	7:34 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/28/19 1	7:34 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1	01/28/19 1	7:34 78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 1	7:34 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/28/19 1	7:34 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1	01/28/19 1	7:34 100-41-4	
2-Hexanone	ND	ug/L	5.0	1	01/28/19 1	7:34 591-78-6	
lodomethane	ND	ug/L	20.0	1	01/28/19 1	7:34 74-88-4	
Methylene Chloride	ND	ug/L	5.0	1	01/28/19 1	7:34 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	01/28/19 1	7:34 108-10-1	
Styrene	ND	ug/L	1.0	1	01/28/19 1	7:34 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 1	7:34 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/28/19 1	7:34 79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1	01/28/19 1	7:34 127-18-4	
Toluene	ND	ug/L	1.0	1	01/28/19 1	7:34 108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/28/19 1	7:34 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/28/19 1	7:34 79-00-5	
Trichloroethene	ND	ug/L	1.0	1	01/28/19 1	7:34 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1	01/28/19 1	7:34 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	01/28/19 1	7:34 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1	01/28/19 1	7:34 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1	01/28/19 1	7:34 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1	01/28/19 1	7:34 1330-20-7	
Surrogates		Ū.					
4-Bromofluorobenzene (S)	98	%	70-130	1	01/28/19 1	7:34 460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	70-130	1	01/28/19 1	7:34 17060-07-0	
Toluene-d8 (S)	101	%	70-130	1	01/28/19 1	7:34 2037-26-5	
2540C Total Dissolved Solids	Analytical M	ethod: SM 25	40C-2011				
Total Dissolved Solids	1510	mg/L	50.0	1	01/29/19 1	5:06	
300.0 IC Anions 28 Days	Analytical M	ethod: EPA 30	00.0 Rev 2.1 1993				
Chloride	756	mg/L	16.0	16	01/31/19 1	3:47 16887-00-6	
Fluoride	0.16	mg/L	0.10	1	01/31/19 0	3:58 16984-48-8	
Sulfate	8.0	mg/L	1.0	1	01/31/19 0	3:58 14808-79-8	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-7R	Lab ID: 924	15385014	Collected: 01/24/	19 13:5	0 Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	10D Preparation Me	ethod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:37	7440-38-2	
Barium	255	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:37	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:37	7440-43-9	
Calcium	89100	ug/L	100	1	01/26/19 07:42	01/28/19 00:37	7440-70-2	
Chromium	6.5	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7439-98-7	
Nickel	ND	ug/L	5.0	1		01/28/19 00:37		
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:37	7782-49-2	
Silver	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7440-22-4	
Vanadium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:37	7440-62-2	
Zinc	10.7	ug/L	10.0	1		01/28/19 00:37		
6020 MET ICPMS	Analytical Met	hod: EPA 60	20B Preparation Me	ethod: E	EPA 3010A			
Boron	ND	ug/L	25.0	1	01/26/19 10:00	01/29/19 12:52	7440-42-8	
Lithium	25.4	ug/L	2.5	1		01/29/19 12:52		
Thallium	0.12	ug/L	0.10	1		01/28/19 21:59		
7470 Mercury		-	70A Preparation Me					
Mercury	ND	ug/L	0.20	1		01/29/19 13:15	7439-97-6	
8260 MSV Low Level Landfill	Analytical Met	hod: EPA 82	60B					
Acetone	ND	ug/L	25.0	1		01/28/19 17:51	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 17:51		
Benzene	ND	ug/L	1.0	1		01/28/19 17:51		
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 17:51		
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 17:51		
Bromoform	ND	ug/L	1.0	1		01/28/19 17:51		
Bromomethane	ND	ug/L	2.0	1		01/28/19 17:51		
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 17:51		
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 17:51		
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 17:51		
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 17:51		
Chloroethane	ND	ug/L	1.0	1		01/28/19 17:51		
Chloroform	ND	ug/L	5.0	1		01/28/19 17:51		
Chloromethane	ND	ug/L	1.0	1		01/28/19 17:51		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 17:51		
Dibromomethane	ND	ug/L	1.0	1		01/28/19 17:51		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:51		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 17:51		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 17:51		
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 17:51		
	ND	uy/L	1.0	I		01/20/19 17.31	10-04-0	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-7R	Lab ID: 924	15385014	Collected: 01/24/1	9 13:50	Received: 0	1/25/19 12:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Mether	nod: EPA 82	260B					
1,2-Dichloroethane	ND	ug/L	1.0	1		01/28/19 17:51	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		01/28/19 17:51	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 17:51	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 17:51	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		01/28/19 17:51	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 17:51	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 17:51	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		01/28/19 17:51	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		01/28/19 17:51	591-78-6	
lodomethane	ND	ug/L	20.0	1		01/28/19 17:51	74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 17:51	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/28/19 17:51	108-10-1	
Styrene	ND	ug/L	1.0	1		01/28/19 17:51	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 17:51	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 17:51	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		01/28/19 17:51		
Toluene	ND	ug/L	1.0	1		01/28/19 17:51		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/28/19 17:51	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/28/19 17:51	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		01/28/19 17:51		
Trichlorofluoromethane	ND	ug/L	1.0	1		01/28/19 17:51		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		01/28/19 17:51		
Vinyl acetate	ND	ug/L	2.0	1		01/28/19 17:51		
Vinyl chloride	ND	ug/L	1.0	1		01/28/19 17:51		
Xylene (Total)	ND	ug/L	1.0	1		01/28/19 17:51		
Surrogates		ug/L		•		01/20/10 11:0	1000 20 1	
4-Bromofluorobenzene (S)	96	%	70-130	1		01/28/19 17:51	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	70-130	1		01/28/19 17:51	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		01/28/19 17:51	2037-26-5	
2540C Total Dissolved Solids	Analytical Mether	nod: SM 254	40C-2011					
Total Dissolved Solids	820	mg/L	50.0	1		01/29/19 15:06	3	
300.0 IC Anions 28 Days	Analytical Mether	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	289	mg/L	6.0	6		01/31/19 14:03	3 16887-00-6	
Fluoride	0.11	mg/L	0.10	1		01/31/19 04:15		
Sulfate	18.3	mg/L	1.0	1		01/31/19 04:15		

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-3	Lab ID: 924	15385015	Collected: 01/25/	19 08:40	0 Received: 01	/25/19 12:00 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:41	7440-38-2	
Barium	715	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:41	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:41	7440-43-9	
Calcium	194000	ug/L	500	5	01/26/19 07:42	01/28/19 23:40	7440-70-2	
Chromium	179	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7440-47-3	
Cobalt	6.2	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7440-48-4	
Copper	36.0	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7440-50-8	
Lead	7.3	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7439-92-1	
Molybdenum	12.0	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7439-98-7	
Nickel	86.0	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7440-02-0	
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:41	7782-49-2	
Silver	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:41	7440-22-4	
Vanadium	13.9	ug/L	5.0	1		01/28/19 00:41		
Zinc	42.7	ug/L	10.0	1		01/28/19 00:41		
6020 MET ICPMS	Analytical Mether	•	20B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	01/26/10 10:00	01/29/19 12:55	7440 42 8	
		-		1				
Lithium Thallium	72.6 ND	ug/L	2.5 0.10	1		01/29/19 12:55 01/28/19 22:02		
		ug/L				01/20/19 22.02	7440-20-0	
7470 Mercury	Analytical Meth	100. EFA 74	170A Preparation Me	eniou. E	FA 7470A			
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 13:22	7439-97-6	
8260 MSV Low Level Landfill	Analytical Mether	nod: EPA 82	260B					
Acetone	ND	ug/L	25.0	1		01/28/19 18:08	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 18:08	107-13-1	
Benzene	ND	ug/L	1.0	1		01/28/19 18:08	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 18:08	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 18:08	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 18:08	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 18:08	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 18:08	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 18:08	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 18:08	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 18:08	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 18:08	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/28/19 18:08	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 18:08		
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 18:08		
Dibromomethane	ND	ug/L	1.0	1		01/28/19 18:08		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 18:08		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/28/19 18:08		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		01/28/19 18:08		
1,1-Dichloroethane	ND	ug/L	1.0	1		01/28/19 18:08		
r, r-Dichloroethane	ND	ug/L	1.0	I		01/20/19 10:08	10-04-0	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-3	Lab ID: 924	15385015	Collected: 01/25/1	9 08:40	Received: 0	1/25/19 12:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level Landfill	Analytical Mether	nod: EPA 82	260B					
1,2-Dichloroethane	ND	ug/L	1.0	1		01/28/19 18:08	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		01/28/19 18:08	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 18:08	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/28/19 18:08	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		01/28/19 18:08	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 18:08	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/28/19 18:08	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		01/28/19 18:08	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		01/28/19 18:08	591-78-6	
lodomethane	ND	ug/L	20.0	1		01/28/19 18:08	74-88-4	
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 18:08		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/28/19 18:08		
Styrene	ND	ug/L	1.0	1		01/28/19 18:08		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 18:08		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/28/19 18:08		
Tetrachloroethene	ND	ug/L	1.0	1		01/28/19 18:08		
Toluene	ND	ug/L	1.0	1		01/28/19 18:08	-	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/28/19 18:08		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/28/19 18:08		
Trichloroethene	ND	ug/L	1.0	1		01/28/19 18:08		
Trichlorofluoromethane	ND	ug/L	1.0	1		01/28/19 18:08		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		01/28/19 18:08		
Vinyl acetate	ND	ug/L	2.0	1		01/28/19 18:08		
Vinyl chloride	ND	ug/L	1.0	1		01/28/19 18:08		
Xylene (Total)	ND	ug/L	1.0	1		01/28/19 18:08		
Surrogates	ND	ug/L	1.0	'		01/20/13 10:00	1000 20 1	
4-Bromofluorobenzene (S)	97	%	70-130	1		01/28/19 18:08	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	70-130	1		01/28/19 18:08		
Toluene-d8 (S)	101	%	70-130	1		01/28/19 18:08		
	101	70	10 100	·		01/20/10 10:00	2001 20 0	
2540C Total Dissolved Solids	Analytical Mether	nod: SM 254	40C-2011					
Total Dissolved Solids	2360	mg/L	50.0	1		01/30/19 21:12		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	1120	mg/L	20.0	20		01/31/19 14:20	16887-00-6	
Fluoride	0.42	mg/L	0.10	1		01/31/19 04:31		
Sulfate	80.2	mg/L	1.0	1		01/31/19 04:31		

ANALYTICAL RESULTS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: EQUIP BLANK	Lab ID: 924	15385016	Collected: 01/25/1	9 11:50	0 Received: 01	/25/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Metl	nod: EPA 601	0D Preparation Me	ethod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:44	7440-36-0	
Arsenic	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:44	7440-38-2	
Barium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:44	7440-39-3	
Beryllium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:44	7440-41-7	
Cadmium	ND	ug/L	1.0	1	01/26/19 07:42	01/28/19 00:44	7440-43-9	
Calcium	ND	ug/L	100	1	01/26/19 07:42	01/28/19 00:44	7440-70-2	
Chromium	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:44	7440-47-3	
Cobalt	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:44	7440-48-4	
Copper	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:44	7440-50-8	
Lead	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:44	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	01/26/19 07:42	01/28/19 00:44	7439-98-7	
Nickel	ND	ug/L	5.0	1		01/28/19 00:44		
Selenium	ND	ug/L	10.0	1	01/26/19 07:42	01/28/19 00:44	7782-49-2	
Silver	ND	ug/L	5.0	1		01/28/19 00:44		
Vanadium	ND	ug/L	5.0	1		01/28/19 00:44		
Zinc	ND	ug/L	10.0	1		01/28/19 00:44		
6020 MET ICPMS	Analytical Met	•	0B Preparation Me	ethod: E	EPA 3010A			
Paran			25.0	4	01/26/10 10:00	01/20/10 12:59	7440 40 0	
Boron	ND	ug/L	25.0	1		01/29/19 12:58		
Lithium	ND	ug/L	2.5	1		01/29/19 12:58		
Thallium	ND	ug/L	0.10	1		01/28/19 22:06	7440-28-0	
7470 Mercury	Analytical Met	10d: EPA /4/	OA Preparation Me	ethod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	01/28/19 21:27	01/29/19 13:24	7439-97-6	
8260 MSV Low Level Landfill	Analytical Met	nod: EPA 826	60B					
Acetone	ND	ug/L	25.0	1		01/28/19 14:09	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		01/28/19 14:09	107-13-1	
Benzene	ND	ug/L	1.0	1		01/28/19 14:09	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		01/28/19 14:09	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/28/19 14:09	75-27-4	
Bromoform	ND	ug/L	1.0	1		01/28/19 14:09	75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/28/19 14:09	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/28/19 14:09	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		01/28/19 14:09	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		01/28/19 14:09	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		01/28/19 14:09	108-90-7	
Chloroethane	ND	ug/L	1.0	1		01/28/19 14:09	75-00-3	
Chloroform	ND	ug/L	5.0	1		01/28/19 14:09	67-66-3	
Chloromethane	ND	ug/L	1.0	1		01/28/19 14:09	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		01/28/19 14:09	124-48-1	
	ND	ug/L	1.0	1		01/28/19 14:09	74-95-3	
Dibromomethane							-	
Dibromomethane 1,2-Dichlorobenzene		ua/L	1.0	1		01/28/19 14:09	95-50-1	
	ND	ug/L ug/L	1.0 1.0	1 1		01/28/19 14:09 01/28/19 14:09		
1,2-Dichlorobenzene		ug/L ug/L ug/L				01/28/19 14:09 01/28/19 14:09 01/28/19 14:09	106-46-7	

ANALYTICAL RESULTS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: EQUIP BLANK	Lab ID: 924	15385016	Collected: 01/25/1	9 11:50	Received: 01/2	ived: 01/25/19 12:00 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV Low Level Landfill	Analytical Mether	nod: EPA 82	260B						
1,2-Dichloroethane	ND	ug/L	1.0	1	C)1/28/19 14:09	107-06-2		
1,1-Dichloroethene	ND	ug/L	1.0	1	C	01/28/19 14:09	75-35-4		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	C	01/28/19 14:09	156-59-2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	C	1/28/19 14:09	156-60-5		
1,2-Dichloropropane	ND	ug/L	1.0	1	C	01/28/19 14:09	78-87-5		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	C	01/28/19 14:09	10061-01-5		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	C	01/28/19 14:09	10061-02-6		
Ethylbenzene	ND	ug/L	1.0	1	C	01/28/19 14:09	100-41-4		
2-Hexanone	ND	ug/L	5.0	1	C	01/28/19 14:09	591-78-6		
lodomethane	ND	ug/L	20.0	1	C	01/28/19 14:09	74-88-4		
Methylene Chloride	ND	ug/L	5.0	1		01/28/19 14:09			
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1	C	01/28/19 14:09	108-10-1		
Styrene	ND	ug/L	1.0	1	C)1/28/19 14:09	100-42-5		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1)1/28/19 14:09			
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1)1/28/19 14:09			
Tetrachloroethene	ND	ug/L	1.0	1)1/28/19 14:09			
Toluene	ND	ug/L	1.0	1		01/28/19 14:09			
1,1,1-Trichloroethane	ND	ug/L	1.0	1)1/28/19 14:09			
1,1,2-Trichloroethane	ND	ug/L	1.0	1)1/28/19 14:09			
Trichloroethene	ND	ug/L	1.0	1)1/28/19 14:09			
Trichlorofluoromethane	ND	ug/L	1.0	1)1/28/19 14:09			
1,2,3-Trichloropropane	ND	ug/L	1.0	1)1/28/19 14:09			
Vinyl acetate	ND	ug/L	2.0	1)1/28/19 14:09			
Vinyl chloride	ND	ug/L	1.0	1)1/28/19 14:09			
Xylene (Total)	ND	ug/L	1.0	1)1/28/19 14:09			
Surrogates		~g/ _		•			1000 20 1		
4-Bromofluorobenzene (S)	96	%	70-130	1	C)1/28/19 14:09	460-00-4		
1,2-Dichloroethane-d4 (S)	104	%	70-130	1	C)1/28/19 14:09	17060-07-0		
Toluene-d8 (S)	100	%	70-130	1	C)1/28/19 14:09	2037-26-5		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011						
Total Dissolved Solids	ND	mg/L	25.0	1	C)1/30/19 21:12			
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Rev 2.1 1993						
Chloride	ND	mg/L	1.0	1	C)1/31/19 04:48	16887-00-6		
Fluoride	ND	mg/L	0.10	1	C	01/31/19 04:48	16984-48-8		
Sulfate	ND	mg/L	1.0	1	C)1/31/19 04:48	14808-79-8		

Project:	-		'EN										
Pace Project No.:	924153												
QC Batch:	45487				is Method:		PA 7470A						
QC Batch Method:	EPA 7	7470A		Analys	is Descript	ion: 7	470 Mercury	/					
Associated Lab San	nples:		2, 92415385003 9, 92415385010 6	·	,	,		,	,	,			
METHOD BLANK:	248365	54		Ν	latrix: Wat	ter							
Associated Lab San	nples:		2, 92415385003 9, 92415385010 6										
				Blank	R	eporting							
Parameter Unit		Units	Result	t	Limit	Analyz	ed	Qualifiers					
Mercury			ug/L		ND	0.20	01/29/19	12:32					
LABORATORY CON	NTROLS	SAMPLE: 24	483655										
				Spike	LCS	;	LCS	% Rec	;				
Paran	neter		Units	Conc.	Resu	lt	% Rec	Limits	Qı	ualifiers			
Mercury			ug/L	2.5		2.1	83	80	-120		-		
MATRIX SPIKE & M	IATRIX S		CATE: 24836	56		2483657							
				MS	MSD								
			92415385002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		ug/L	ND	2.5	2.5	1.8	1.8	73	72	75-125	1	25	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	CHAR/ 924153	AH BRICKHAVEN 385				
QC Batch:	4546	79	Analysis Meth	iod: EF	PA 6010D	
QC Batch Method:	EPA 3	3010A	Analysis Desc	cription: 60	10 MET	
Associated Lab San	nples:	92415385002, 92415385003 92415385009, 92415385010 92415385016	, ,	,	'	
METHOD BLANK:	248301	19	Matrix:	Water		
Associated Lab San	nples:	92415385002, 92415385003 92415385009, 92415385010 92415385016	, ,	,	'	
Paran	neter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Antimony		ug/L	ND	5.0	01/27/19 23:25	
Arsenic		ug/L	ND	10.0	01/27/19 23:25	
Barium		ug/L	ND	5.0	01/27/19 23:25	
Beryllium		ug/L	ND	1.0	01/27/19 23:25	
Cadmium		ug/L	ND	1.0	01/27/19 23:25	
alcium		ug/L	ND	100	01/27/19 23:25	
hromium		ug/L	ND	5.0	01/27/19 23:25	
obalt		ug/L	ND	5.0	01/27/19 23:25	
opper		ug/L	ND	5.0	01/27/19 23:25	
ead		ug/L	ND	5.0	01/27/19 23:25	
lolybdenum		ug/L	ND	5.0	01/27/19 23:25	
ickel		ug/L	ND	5.0	01/27/19 23:25	
elenium		ug/L	ND	10.0	01/27/19 23:25	
ilver		ug/L	ND	5.0	01/27/19 23:25	
'anadium		ug/L	ND	5.0	01/27/19 23:25	
Zinc		ug/L	ND	10.0	01/27/19 23:25	

LABORATORY CONTROL SAMPLE: 2483020

	2400020					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
ntimony	ug/L	500	442	88	80-120	
rsenic	ug/L	500	418	84	80-120	
arium	ug/L	500	450	90	80-120	
eryllium	ug/L	500	454	91	80-120	
admium	ug/L	500	438	88	80-120	
alcium	ug/L	5000	4430	89	80-120	
nromium	ug/L	500	444	89	80-120	
obalt	ug/L	500	430	86	80-120	
opper	ug/L	500	446	89	80-120	
ad	ug/L	500	427	85	80-120	
blybdenum	ug/L	500	457	91	80-120	
ckel	ug/L	500	432	86	80-120	
elenium	ug/L	500	427	85	80-120	
lver	ug/L	250	221	88	80-120	
nadium	ug/L	500	434	87	80-120	
inc	ug/L	500	424	85	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

IATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2483021 2483022												
			MS	MSD								
	9	2415385002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	ND	500	500	482	502	96	100	75-125	4	20	
Arsenic	ug/L	ND	500	500	468	487	92	96	75-125	4	20	
Barium	ug/L	73.4	500	500	554	572	96	100	75-125	3	20	
Beryllium	ug/L	ND	500	500	479	494	96	99	75-125	3	20	
Cadmium	ug/L	ND	500	500	474	489	95	98	75-125	3	20	
Calcium	ug/L	227000	5000	5000	234000	239000	124	228	75-125	2	20	M6
Chromium	ug/L	ND	500	500	464	475	93	95	75-125	2	20	
Cobalt	ug/L	ND	500	500	440	455	88	91	75-125	3	20	
Copper	ug/L	ND	500	500	486	502	97	100	75-125	3	20	
Lead	ug/L	ND	500	500	437	449	87	90	75-125	3	20	
Molybdenum	ug/L	147	500	500	631	655	97	102	75-125	4	20	
Nickel	ug/L	5.4	500	500	444	458	88	91	75-125	3	20	
Selenium	ug/L	ND	500	500	475	498	95	99	75-125	5	20	
Silver	ug/L	ND	250	250	237	242	95	97	75-125	2	20	
Vanadium	ug/L	6.5	500	500	470	482	93	95	75-125	3	20	
Zinc	ug/L	ND	500	500	444	455	88	90	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:		H BRICKHAVE	N										
Pace Project No.:	924153	85											
QC Batch:	45468	86		Analys	is Method	: E	PA 6020B						
QC Batch Method:	EPA 3	010A		Analys	is Descrip	tion: 6	020 MET						
Associated Lab Sar	mples:	92415385002, 92415385009, 92415385016											
METHOD BLANK:	248305	1		Ν	/latrix: Wa	ter							
Associated Lab Sar	mples:	92415385002, 92415385009, 92415385016		·	,	,		,	,	,			
				Blank		leporting							
Parar	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Boron			ug/L		ND	25.0	01/28/19	20:30					
Lithium			ug/L		ND	2.5	01/28/19	20:30					
Thallium			ug/L		ND	0.10	01/28/19	20:30					
LABORATORY CO	NTROLS	SAMPLE: 248	33052										
				Spike	LCS	6	LCS	% Red	;				
Parar	neter		Units	Conc.	Resu	ult	% Rec	Limits	Q Q	ualifiers			
Boron			ug/L	50		44.4	89	80	-120		•		
Lithium			ug/L	50		47.2	94	80	-120				
Thallium			ug/L	10		9.2	92	80	-120				
MATRIX SPIKE & M			ATE: 24830	53		2483054							
				MS	MSD								
		g	2415385002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	ər	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron		ug/L	1760	50	50	1990	2090	471	663	75-125	5	20	M6
Lithium		ug/L	26.5	50	50	72.6	72.7	92	93	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Thallium

ug/L

0.47

10

10

10.6

10.6

101

101 75-125

0 20

QC Batch: 45483	3	Analysis Meth	od: EP	A 8260B	
QC Batch Method: EPA 8	260B	Analysis Desc	ription: 82	60 MSV Low Leve	l Landfill
	92415385001, 92415385002, 92415385008, 92415385009, 92415385015, 92415385016				
METHOD BLANK: 248352	9	Matrix:	Water		
	92415385001, 92415385002, 92415385008, 92415385009, 92415385015, 92415385016				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	01/28/19 13:18	
1,1,1-Trichloroethane	ug/L	ND	1.0	01/28/19 13:18	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	01/28/19 13:18	
1,1,2-Trichloroethane	ug/L	ND	1.0	01/28/19 13:18	
1,1-Dichloroethane	ug/L	ND	1.0	01/28/19 13:18	
1,1-Dichloroethene	ug/L	ND	1.0	01/28/19 13:18	
1,2,3-Trichloropropane	ug/L	ND	1.0	01/28/19 13:18	
1,2-Dichlorobenzene	ug/L	ND	1.0	01/28/19 13:18	
1,2-Dichloroethane	ug/L	ND	1.0	01/28/19 13:18	
1,2-Dichloropropane	ug/L	ND	1.0	01/28/19 13:18	
1,4-Dichlorobenzene	ug/L	ND	1.0	01/28/19 13:18	
2-Butanone (MEK)	ug/L	ND	5.0	01/28/19 13:18	
2-Hexanone	ug/L	ND	5.0	01/28/19 13:18	
4-Methyl-2-pentanone (MIBK	, .	ND		01/28/19 13:18	
Acetone	ug/L	ND		01/28/19 13:18	
Acrylonitrile	ug/L	ND	10.0	01/28/19 13:18	
Benzene	ug/L	ND	1.0	01/28/19 13:18	
Bromochloromethane	ug/L	ND	1.0	01/28/19 13:18	
Bromodichloromethane	ug/L	ND	1.0	01/28/19 13:18	
Bromoform Bromomethane	ug/L	ND ND	1.0	01/28/19 13:18 01/28/19 13:18	
Carbon disulfide	ug/L ug/L	ND ND	2.0 2.0	01/28/19 13:18	
Carbon disullide	ug/L	ND	2.0	01/28/19 13:18	
Chlorobenzene	ug/L	ND	1.0	01/28/19 13:18	
Chloroethane	ug/L	ND	1.0	01/28/19 13:18	
Chloroform	ug/L	ND	5.0	01/28/19 13:18	
Chloromethane	ug/L	ND	1.0	01/28/19 13:18	
cis-1,2-Dichloroethene	ug/L	ND	1.0	01/28/19 13:18	
cis-1,3-Dichloropropene	ug/L	ND	1.0	01/28/19 13:18	
Dibromochloromethane	ug/L	ND	1.0	01/28/19 13:18	
Dibromomethane	ug/L	ND	1.0	01/28/19 13:18	
Ethylbenzene	ug/L	ND	1.0	01/28/19 13:18	
odomethane	ug/L	ND	20.0	01/28/19 13:18	
Methylene Chloride	ug/L	ND	5.0	01/28/19 13:18	
Styrene	ug/L	ND	1.0	01/28/19 13:18	
Tetrachloroethene	ug/L	ND	1.0	01/28/19 13:18	
Toluene	ug/L	ND	1.0	01/28/19 13:18	
rans-1,2-Dichloroethene	ug/L	ND	1.0	01/28/19 13:18	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

METHOD BLANK: 248352	29	Matrix:	Water		
Associated Lab Samples:	92415385001, 92415385002 92415385008, 92415385009 92415385015, 92415385016	, 92415385010, 92	,	,	,
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	ND	1.0	01/28/19 13:18	
trans-1,4-Dichloro-2-butene	ug/L	ND	1.0	01/28/19 13:18	
Trichloroethene	ug/L	ND	1.0	01/28/19 13:18	
Trichlorofluoromethane	ug/L	ND	1.0	01/28/19 13:18	
Vinyl acetate	ug/L	ND	2.0	01/28/19 13:18	
Vinyl chloride	ug/L	ND	1.0	01/28/19 13:18	
Xylene (Total)	ug/L	ND	1.0	01/28/19 13:18	
1,2-Dichloroethane-d4 (S)	%	103	70-130	01/28/19 13:18	
4-Bromofluorobenzene (S)	%	96	70-130	01/28/19 13:18	
Toluene-d8 (S)	%	99	70-130	01/28/19 13:18	

LABORATORY CONTROL SAMPLE: 2483530

LABORATORT CONTROL SAMPLE.	2405550	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	46.5	93	70-130	
1,1,1-Trichloroethane	ug/L	50	47.2	94	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	47.8	96	70-130	
1,1,2-Trichloroethane	ug/L	50	47.1	94	70-130	
1,1-Dichloroethane	ug/L	50	47.0	94	70-130	
1,1-Dichloroethene	ug/L	50	48.0	96	70-130	
1,2,3-Trichloropropane	ug/L	50	49.4	99	70-130	
1,2-Dichlorobenzene	ug/L	50	45.5	91	70-130	
1,2-Dichloroethane	ug/L	50	45.7	91	70-130	
1,2-Dichloropropane	ug/L	50	46.6	93	70-130	
1,4-Dichlorobenzene	ug/L	50	45.8	92	70-130	
2-Butanone (MEK)	ug/L	100	108	108	64-135	
2-Hexanone	ug/L	100	101	101	66-135	
4-Methyl-2-pentanone (MIBK)	ug/L	100	102	102	70-130	
Acetone	ug/L	100	99.3	99	61-157	
Acrylonitrile	ug/L	250	238	95	61-143	
Benzene	ug/L	50	45.8	92	70-130	
Bromochloromethane	ug/L	50	48.9	98	70-130	
Bromodichloromethane	ug/L	50	47.6	95	70-130	
Bromoform	ug/L	50	49.3	99	70-130	
Bromomethane	ug/L	50	42.5	85	38-130	
Carbon disulfide	ug/L	50	47.4	95	68-130	
Carbon tetrachloride	ug/L	50	47.2	94	70-130	
Chlorobenzene	ug/L	50	46.2	92	70-130	
Chloroethane	ug/L	50	44.4	89	37-142	
Chloroform	ug/L	50	46.4	93	70-130	
Chloromethane	ug/L	50	42.8	86	48-130	
cis-1,2-Dichloroethene	ug/L	50	46.9	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

LABORATORY CONTROL SAMPLE: 2483530

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,3-Dichloropropene	ug/L	50	49.2	98	70-130	
Dibromochloromethane	ug/L	50	49.7	99	70-130	
Dibromomethane	ug/L	50	47.1	94	70-130	
thylbenzene	ug/L	50	45.8	92	70-130	
domethane	ug/L	100	92.5	93	40-130	
thylene Chloride	ug/L	50	48.2	96	67-132	
/rene	ug/L	50	47.8	96	70-130	
rachloroethene	ug/L	50	45.7	91	69-130	
Jene	ug/L	50	45.5	91	70-130	
s-1,2-Dichloroethene	ug/L	50	49.9	100	70-130	
s-1,3-Dichloropropene	ug/L	50	49.8	100	70-130	
s-1,4-Dichloro-2-butene	ug/L	50	53.3	107	35-189	
hloroethene	ug/L	50	45.2	90	70-130	
hlorofluoromethane	ug/L	50	43.0	86	63-130	
yl acetate	ug/L	100	104	104	55-143	
yl chloride	ug/L	50	48.1	96	70-131	
ene (Total)	ug/L	150	141	94	70-130	
-Dichloroethane-d4 (S)	%			98	70-130	
romofluorobenzene (S)	%			102	70-130	
uene-d8 (S)	%			102	70-130	

MATRIX SPIKE SAMPLE:	2483532						
		92415385005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20.5	103	73-134	
1,1,1-Trichloroethane	ug/L	ND	20	23.8	119	82-143	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	21.8	109	70-136	
1,1,2-Trichloroethane	ug/L	ND	20	23.6	118	70-135	
1,1-Dichloroethane	ug/L	ND	20	23.4	117	70-139	
1,1-Dichloroethene	ug/L	ND	20	23.0	115	70-154	
1,2,3-Trichloropropane	ug/L	ND	20	22.2	111	71-137	
1,2-Dichlorobenzene	ug/L	ND	20	22.5	112	70-133	
1,2-Dichloroethane	ug/L	ND	20	21.7	108	70-137	
1,2-Dichloropropane	ug/L	ND	20	24.1	120	70-140	
1,4-Dichlorobenzene	ug/L	ND	20	21.6	108	70-133	
2-Butanone (MEK)	ug/L	ND	40	48.0	120	60-139	
2-Hexanone	ug/L	ND	40	42.9	107	65-138	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	42.3	106	65-135	
Acetone	ug/L	ND	40	47.0	117	60-148	
Acrylonitrile	ug/L	ND	100	108	108	64-147	
Benzene	ug/L	ND	20	24.0	120	70-151	
Bromochloromethane	ug/L	ND	20	24.3	121	70-141	
Bromodichloromethane	ug/L	ND	20	23.4	117	70-138	
Bromoform	ug/L	ND	20	17.6	88	63-130	
Bromomethane	ug/L	ND	20	30.1	150	15-152	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

MATRIX SPIKE SAMPLE:	2483532						
		92415385005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Carbon disulfide	ug/L	ND	20	22.8	114	69-149	
Carbon tetrachloride	ug/L	ND	20	23.5	117	70-143	
Chlorobenzene	ug/L	ND	20	22.5	113	70-138	
Chloroethane	ug/L	ND	20	25.0	125	52-163	
Chloroform	ug/L	ND	20	21.4	107	70-139	
Chloromethane	ug/L	ND	20	24.0	120	41-139	
cis-1,2-Dichloroethene	ug/L	ND	20	22.9	115	70-141	
cis-1,3-Dichloropropene	ug/L	ND	20	24.8	124	70-137	
Dibromochloromethane	ug/L	ND	20	21.0	105	70-134	
Dibromomethane	ug/L	ND	20	21.6	108	70-138	
Ethylbenzene	ug/L	ND	20	22.5	113	66-153	
Iodomethane	ug/L	ND	40	42.3	106	20-138	
Methylene Chloride	ug/L	ND	20	22.5	112	42-159	
Styrene	ug/L	ND	20	22.8	114	70-135	
Tetrachloroethene	ug/L	ND	20	23.5	118	59-143	
Toluene	ug/L	ND	20	22.0	110	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	23.4	117	70-146	
trans-1,3-Dichloropropene	ug/L	ND	20	24.2	121	70-135	
trans-1,4-Dichloro-2-butene	ug/L	ND	20	16.1	80	47-135	
Trichloroethene	ug/L	ND	20	24.6	123	70-147	
Trichlorofluoromethane	ug/L	ND	20	23.4	117	70-148	
Vinyl acetate	ug/L	ND	40	45.4	113	49-151	
Vinyl chloride	ug/L	ND	20	23.5	118	70-156	
Xylene (Total)	ug/L	ND	60	67.5	112	63-158	
1,2-Dichloroethane-d4 (S)	%				98	70-130	
4-Bromofluorobenzene (S)	%				100	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 2483531

		92415385003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		30	
1,1,1-Trichloroethane	ug/L	ND	ND		30	
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		30	
1,1,2-Trichloroethane	ug/L	ND	ND		30	
1,1-Dichloroethane	ug/L	ND	ND		30	
1,1-Dichloroethene	ug/L	ND	ND		30	
1,2,3-Trichloropropane	ug/L	ND	ND		30	
1,2-Dichlorobenzene	ug/L	ND	ND		30	
1,2-Dichloroethane	ug/L	ND	ND		30	
1,2-Dichloropropane	ug/L	ND	ND		30	
1,4-Dichlorobenzene	ug/L	ND	ND		30	
2-Butanone (MEK)	ug/L	ND	ND		30	
2-Hexanone	ug/L	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

SAMPLE DUPLICATE: 2483531

		92415385003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Acetone	ug/L	ND	ND		30	
Acrylonitrile	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Bromochloromethane	ug/L	ND	ND		30	
Bromodichloromethane	ug/L	ND	ND		30	
Bromoform	ug/L	ND	ND		30	
Bromomethane	ug/L	ND	ND		30	
Carbon disulfide	ug/L	ND	ND		30	
Carbon tetrachloride	ug/L	ND	ND		30	
Chlorobenzene	ug/L	ND	ND		30	
Chloroethane	ug/L	ND	ND		30	
Chloroform	ug/L	ND	ND		30	
Chloromethane	ug/L	ND	ND		30	
is-1,2-Dichloroethene	ug/L	ND	ND		30	
is-1,3-Dichloropropene	ug/L	ND	ND		30	
Dibromochloromethane	ug/L	ND	ND		30	
Dibromomethane	ug/L	ND	ND		30	
thylbenzene	ug/L	ND	ND		30	
odomethane	ug/L	ND	ND		30	
lethylene Chloride	ug/L	ND	ND		30	
Styrene	ug/L	ND	ND		30	
etrachloroethene	ug/L	ND	ND		30	
oluene	ug/L	ND	ND		30	
ans-1,2-Dichloroethene	ug/L	ND	ND		30	
ans-1,3-Dichloropropene	ug/L	ND	ND		30	
ans-1,4-Dichloro-2-butene	ug/L	ND	ND		30	
richloroethene	ug/L	ND	ND		30	
richlorofluoromethane	ug/L	ND	ND		30	
/inyl acetate	ug/L	ND	ND		30	
/inyl chloride	ug/L	ND	ND		30	
(ylene (Total)	ug/L	ND	ND		30	
,2-Dichloroethane-d4 (S)	%	104	105	1		
4-Bromofluorobenzene (S)	%	98	106	8		
Toluene-d8 (S)	%	101	108	7		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	CHARA	AH BRICKHAVI	EN									
Pace Project No.:	924153	385										
QC Batch:	4546	58		Analysis M	ethod:	SN	N 2540C-201	1				
QC Batch Method:	SM 2	540C-2011		Analysis D	escription:	25	40C Total Di	ssolved S	Solids			
Associated Lab Sar	nples:	92415385002 92415385009		8, 92415385004,	924153850	05, 92	2415385006,	9241538	5007,	92415	5385008,	
METHOD BLANK:	248295	51		Matri	x: Water							
Associated Lab Sar	nples:	92415385002 92415385009	,	8, 92415385004,	924153850	05, 92	2415385006,	9241538	5007,	92415	5385008,	
				Blank	Reporti	ng						
Paran	neter		Units	Result	Limit		Analyze	d	Qualif	iers	_	
Total Dissolved Soli	ds		mg/L	NE)	25.0	01/25/19 23	3:32				
LABORATORY CO	NTROLS	SAMPLE: 24	82952									
_				Spike	LCS		LCS	% Re		-		
Paran	neter		Units	Conc.	Result		% Rec	Limits	; 	Qua	alifiers	
Total Dissolved Soli	ds		mg/L	251	250		100	90	0-110			
SAMPLE DUPLICA	TE: 24	82953										
_				92415385002	•				Max			
Paran	neter	·	Units	Result	Resul		RPD		RPD		Qualifiers	
Total Dissolved Soli	ds		mg/L	1110	D	1090		2		5		
SAMPLE DUPLICA	TE: 24	82954										
				92415105012	Dup				Max			
Paran	neter		Units	Result	Resul		RPD		RPD		Qualifiers	
Total Dissolved Soli			mg/L	576	<u> </u>	587		2		5		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CHARAH BRICK	HAVEN					
Pace Project No.:	92415385						
QC Batch:	454659		Analysis I	Method:	SM 2540C-20	11	
QC Batch Method:	SM 2540C-2011		Analysis [Description:	2540C Total D	issolved Solids	
Associated Lab Samp	oles: 92415385	5010, 92415385011					
METHOD BLANK:	2482955		Mat	rix: Water			
Associated Lab Samp	oles: 92415385	5010, 92415385011					
			Blank	Reporting			
Parame	eter	Units	Result	Limit	Analyz	ed Quali	fiers
Total Dissolved Solids	S	mg/L	N	ID 2	5.0 01/26/19 (01:25	
LABORATORY CON	TROL SAMPLE:	2482956					
Dama		11-20-	Spike	LCS	LCS	% Rec	
Parame		Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids	S	mg/L	251	246	98	90-110	
	E. 0400057						
SAMPLE DUPLICATI	E: 2482957		9241538501	0 Dup		Мах	
Parame	eter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	S	mg/L	64	49 (645	1	5
SAMPLE DUPLICATI	E: 2482958			_			
Dener	ator	Linita	9241529300 Decult	- 1	000	Max	Qualifiara
Parame		Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	S	mg/L	1'	18 ·	125	6	5 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CHARAH BI Pace Project No.: 92415385	RICKHAVEN					
QC Batch: 455139		Analysis M	ethod:	SM 2540C-201	1	
QC Batch Method: SM 2540C	-2011	Analysis De	escription: 2	2540C Total Dis	ssolved Solids	
Associated Lab Samples: 924	15385012, 924153850	13, 92415385014				
METHOD BLANK: 2484718		Matrix	k: Water			
Associated Lab Samples: 924	15385012, 924153850	13, 92415385014				
Parameter	Units	Blank Result	Reporting Limit	Analyze	d Quali	fiers
Total Dissolved Solids	mg/L	ND	25.	01/29/19 1	5:06	
LABORATORY CONTROL SAM	PLE: 2484719					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solids	mg/L	250	274	110	90-110	
SAMPLE DUPLICATE: 248472	0					
_		92415330006	•		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	203	3 20	3	0	5
SAMPLE DUPLICATE: 248472	1					
_		92415373006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	256	S 25	2	2	5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: CHARAH BRIG	CKHAVEN					
Pace Project No.: 92415385						
QC Batch: 455488		Analysis M	ethod:	SM 2540C-201	1	
QC Batch Method: SM 2540C-20	011	Analysis De	escription: 2	2540C Total Di	ssolved Solids	
Associated Lab Samples: 92415	385015, 92415385016					
METHOD BLANK: 2486233		Matrix	x: Water			
Associated Lab Samples: 92415	385015, 92415385016					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	d Qualit	fiers
Total Dissolved Solids	mg/L	NE) 25.0	01/30/19 2 ⁻	1:12	
LABORATORY CONTROL SAMPL	E: 2486234					
		Childa	LCS	LCS	% Rec	
		Spike				
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
	Units mg/L	•				Qualifiers
		Conc.	Result	% Rec	Limits	Qualifiers
Parameter Total Dissolved Solids SAMPLE DUPLICATE: 2486235		Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids		Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solids		Conc	Result	% Rec	Limits 90-110	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	CHAR	AH BRICKHA	/EN										
Pace Project No.:	92415	385											
QC Batch:	4552	92		Analys	is Method:	EF	PA 300.0 Re	ev 2.1 1993	;				
QC Batch Method:	EPA	300.0 Rev 2.1	1993	Analys	is Descript	ion: 30	0.0 IC Anio	ns					
Associated Lab Sa	mples:		2, 92415385003 9, 92415385010 6										
METHOD BLANK:	24852	05		N	Aatrix: Wa	ter							
Associated Lab Sa	mples:		2, 92415385003 9, 92415385010 6										
				Blank		eporting							
Para	meter		Units	Result	t	Limit	Analyz	ed	Qualifiers				
Chloride			mg/L		ND	1.0	01/30/19						
Fluoride			mg/L		ND	0.10	01/30/19						
Sulfate			mg/L		ND	1.0	01/30/19	20:16					
_ABORATORY CO		SAMPLE: 2	485206										
		0, 2	100200	Spike	LCS	5	LCS	% Rec	;				
Para	meter		Units	Conc.	Resu	lt o	% Rec	Limits	Q	ualifiers			
Chloride			mg/L	50		50.8	102	90	-110				
Fluoride			mg/L	2.5		2.3	91	90	-110				
Sulfate			mg/L	50		52.0	104	90	-110				
			CATE: 24952	17		2495209							
MATRIX SPIKE & I	MATRIX	SPIKE DUPLI	CATE: 248520		MSD	2485208							
MATRIX SPIKE & I	MATRIX	SPIKE DUPLI	CATE: 248520 92415293016)7 MS Spike	MSD Spike	2485208 MS	MSD	MS	MSD	% Rec		Мах	
MATRIX SPIKE & I Paramet		SPIKE DUPLI		MS			MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Paramet			92415293016	MS Spike	Spike	MS	-		-	Limits	RPD 4	RPD	Qua M1
Paramet		Units	92415293016 Result	MS Spike Conc.	Spike Conc.	MS Result	Result	% Rec	% Rec	Limits		RPD 10	M1
		Units mg/L	92415293016 	MS Spike Conc. 50	Spike Conc. 50	MS Result 95.9	Result 100	% Rec 71	% Rec 79	Limits 90-110 90-110	4	RPD 10 10	M1
Paramet Chloride Fluoride Sulfate	er	Units mg/L mg/L mg/L	92415293016 Result 60.3 0.056J 186	MS Spike Conc. 50 2.5 50	Spike Conc. 50 2.5	MS Result 95.9 2.5 222	Result 100 2.6	% Rec 71 98	% Rec 79 101	Limits 90-110 90-110	4	RPD 10 10	M1
Paramet Chloride Fluoride Sulfate	er	Units mg/L mg/L mg/L	92415293016 Result 60.3 0.056J 186	MS Spike Conc. 50 2.5 50	Spike Conc. 50 2.5	MS Result 95.9 2.5	Result 100 2.6	% Rec 71 98	% Rec 79 101	Limits 90-110 90-110	4	RPD 10 10	M1
Paramet Chloride Gulfate	er	Units mg/L mg/L mg/L	92415293016 Result 60.3 0.056J 186	MS Spike Conc. 50 2.5 50	Spike Conc. 50 2.5 50	MS Result 95.9 2.5 222	Result 100 2.6	% Rec 71 98	% Rec 79 101	Limits 90-110 90-110	4	RPD 10 10	M1
Paramet Chloride Fluoride Sulfate	er MATRIX	Units mg/L mg/L mg/L	92415293016 Result 60.3 0.056J 186 CATE: 248520	MS Spike Conc. 50 2.5 50 90 MS	Spike Conc. 50 2.5 50 MSD	MS Result 95.9 2.5 222 2485210	Result 100 2.6 231	% Rec 71 98 74	% Rec 79 101 91	Limits 90-110 90-110 90-110 % Rec	4 4 4	RPD 10 10 10 10	M1 M1
Paramet Chloride Sulfate MATRIX SPIKE & I Paramet	er MATRIX	Units mg/L mg/L mg/L SPIKE DUPLI	92415293016 Result 60.3 0.056J 186 CATE: 248520 92415385009	MS Spike Conc. 50 2.5 50 99 MS Spike	Spike Conc. 50 2.5 50 MSD Spike	MS Result 95.9 2.5 222 2485210 MS	Result 100 2.6 231 MSD	% Rec 71 98 74 MS	% Rec 79 101 91 MSD	Limits 90-110 90-110 90-110 90-110 % Rec Limits	4 4 4	RPD 10 10 10 10 Max RPD	M1 M1
Paramet Chloride Fluoride Sulfate MATRIX SPIKE & I	er MATRIX	Units mg/L mg/L mg/L SPIKE DUPLI Units	92415293016 Result 60.3 0.056J 186 CATE: 248520 92415385009 Result	MS Spike Conc. 50 2.5 50 09 MS Spike Conc.	Spike Conc. 50 2.5 50 MSD Spike Conc.	MS Result 95.9 2.5 222 2485210 MS Result	Result 100 2.6 231 MSD Result	% Rec 71 98 74 MS % Rec	% Rec 79 101 91 MSD % Rec	Limits 90-110 90-110 90-110 90-110 % Rec Limits 90-110	4 4 4 8	RPD 10 10 10 10 Max RPD	M1 M1 Qua M6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: LEACHATE PWS:	Lab ID: 92415 Site ID:	385002 Collected: 01/21/19 13:20 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.000 ± 0.359 (0.759) C:NA T:87%	pCi/L	02/07/19 20:23	7 13982-63-3	
Radium-228	EPA 904.0	1.06 ± 0.408 (0.624) C:97% T:83%	pCi/L	02/05/19 16:03	3 15262-20-1	
Total Radium	Total Radium Calculation	1.06 ± 0.767 (1.38)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: SW-2 PWS:	Lab ID: 924153 Site ID:	85003 Collected: 01/21/19 14:00 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.289 ± 0.496 (0.869) C:NA T:86%	pCi/L	02/07/19 20:2	7 13982-63-3	
Radium-228	EPA 904.0	0.220 ± 1.84 (4.24) C:74% T:29%	pCi/L	02/07/19 14:0	4 15262-20-1	
Total Radium	Total Radium Calculation	0.509 ± 2.34 (5.11)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: SW-1 PWS:	Lab ID: 924153 Site ID:	85004 Collected: 01/21/19 14:00 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.458 ± 0.499 (0.785) C:NA T:86%	pCi/L	02/07/19 20:2	7 13982-63-3	
Radium-228	EPA 904.0	0.602 ± 0.352 (0.652) C:95% T:81%	pCi/L	02/05/19 16:03	3 15262-20-1	
Total Radium	Total Radium Calculation	1.06 ± 0.851 (1.44)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: BG-1 PWS:	Lab ID: 924153 Site ID:	85005 Collected: 01/22/19 10:10 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.000 ± 0.321 (0.678) C:NA T:92%	pCi/L	02/07/19 20:2	7 13982-63-3	
Radium-228	EPA 904.0	1.08 ± 0.403 (0.608) C:96% T:87%	pCi/L	02/05/19 16:03	3 15262-20-1	
Total Radium	Total Radium Calculation	1.08 ± 0.724 (1.29)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: BG-2 PWS:	Lab ID: 924153 Site ID:	85006 Collected: 01/22/19 13:45 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.236 ± 0.401 (0.708) C:NA T:88%	pCi/L	02/07/19 20:2	7 13982-63-3	
Radium-228	EPA 904.0	1.06 ± 0.418 (0.649) C:94% T:82%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	1.30 ± 0.819 (1.36)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-4 PWS:	Lab ID: 924153 Site ID:	85007 Collected: 01/22/19 17:45 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.913 ± 0.558 (0.685) C:NA T:87%	pCi/L	02/07/19 20:42	2 13982-63-3	
Radium-228	EPA 904.0	1.35 ± 0.429 (0.538) C:95% T:85%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	2.26 ± 0.987 (1.22)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-2 PWS:	Lab ID: 924153 Site ID:	885008 Collected: 01/23/19 08:40 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.21 ± 0.623 (0.718) C:NA T:86%	pCi/L	02/07/19 20:42	2 13982-63-3	
Radium-228	EPA 904.0	1.49 ± 0.464 (0.590) C:96% T:86%	pCi/L	02/05/19 16:04	15262-20-1	
Total Radium	Total Radium Calculation	2.70 ± 1.09 (1.31)	pCi/L	02/08/19 12:45	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-8 PWS:	Lab ID: 924153 Site ID:	85009 Collected: 01/23/19 11:00 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.743 ± 0.567 (0.806) C:NA T:88%	pCi/L	02/07/19 20:42	2 13982-63-3	
Radium-228	EPA 904.0	1.20 ± 0.439 (0.647) C:94% T:82%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	1.94 ± 1.01 (1.45)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-6 PWS:	Lab ID: 92415 Site ID:	385010 Collected: 01/23/19 13:50 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.000 ± 0.340 (0.719) C:NA T:90%	pCi/L	02/07/19 20:42	2 13982-63-3	
Radium-228	EPA 904.0	0.628 ± 0.315 (0.538) C:92% T:88%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	0.628 ± 0.655 (1.26)	pCi/L	02/08/19 12:45	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: DUP PWS:	Lab ID: 9241538 Site ID:	5011 Collected: 01/23/19 12:50 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.510 ± 0.461 (0.680) C:NA T:89%	pCi/L	02/07/19 20:42	2 13982-63-3	
Radium-228	EPA 904.0	0.757 ± 0.351 (0.585) C:94% T:81%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	1.27 ± 0.812 (1.27)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-5 PWS:	Lab ID: 92415 Site ID:	385012 Collected: 01/24/19 08:50 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.108 ± 0.366 (0.706) C:NA T:87%	pCi/L	02/07/19 20:42	2 13982-63-3	
Radium-228	EPA 904.0	0.695 ± 0.324 (0.517) C:93% T:79%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	0.803 ± 0.690 (1.22)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-1 PWS:	Lab ID: 92415: Site ID:	385013 Collected: 01/24/19 11:00 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.607 ± 0.425 (0.512) C:NA T:95%	pCi/L	02/07/19 20:57	7 13982-63-3	
Radium-228	EPA 904.0	0.737 ± 0.337 (0.550) C:93% T:85%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	1.34 ± 0.762 (1.06)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-7R PWS:	Lab ID: 92415 Site ID:	385014 Collected: 01/24/19 13:50 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.987 ± 0.578 (0.733) C:NA T:93%	pCi/L	02/07/19 20:5	7 13982-63-3	
Radium-228	EPA 904.0	1.01 ± 0.361 (0.496) C:94% T:88%	pCi/L	02/05/19 16:04	4 15262-20-1	
Total Radium	Total Radium Calculation	2.00 ± 0.939 (1.23)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: MW-3 PWS:	Lab ID: 92415 Site ID:	385015 Collected: 01/25/19 08:40 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	1.92 ± 0.716 (0.622) C:NA T:93%	pCi/L	02/07/19 20:5	7 13982-63-3	
Radium-228	EPA 904.0	2.00 ± 0.570 (0.657) C:94% T:81%	pCi/L	02/05/19 16:0	5 15262-20-1	
Total Radium	Total Radium Calculation	3.92 ± 1.29 (1.28)	pCi/L	02/08/19 12:4	5 7440-14-4	

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Sample: EQUIP BLANK PWS:	Lab ID: 92415 Site ID:	385016 Collected: 01/25/19 11:50 Sample Type:	Received:	01/25/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.303 ± 0.397 (0.661) C:NA T:94%	pCi/L	02/07/19 20:57	7 13982-63-3	
Radium-228	EPA 904.0	0.676 ± 0.315 (0.523) C:91% T:92%	pCi/L	02/05/19 16:05	5 15262-20-1	
Total Radium	Total Radium Calculation	0.979 ± 0.712 (1.18)	pCi/L	02/08/19 12:45	5 7440-14-4	

QUALITY CONTROL - RADIOCHEMISTRY

Project:	CHARAH BRICK	HAVEN			
Pace Project No.:	92415385				
QC Batch:	328350	Analysis Me	thod: EPA 904.)	
QC Batch Method:	EPA 904.0	Analysis De	scription: 904.0 Rad	dium 228	
Associated Lab Sar		5002, 92415385004, 92415385005, 9 5010, 92415385011, 92415385012, 9	,		
METHOD BLANK:	1598270	Matrix	Water		
Associated Lab Sar	•	5002, 92415385004, 92415385005, 9 5010, 92415385011, 92415385012, 9	,	, , ,	
Parar	meter	Act ± Unc (MDC) Carr Trac	c Units	Analyzed	Qualifiers
Radium-228		0.433 ± 0.300 (0.572) C:96% T:83	% pCi/L	02/05/19 16:04	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	CHARAH BRICKH	HAVEN				
Pace Project No.:	92415385					
QC Batch:	328833	Analysis Method:	EPA 904.0			
QC Batch Method:	EPA 904.0	Analysis Description	n: 904.0 Radiu	ım 228		
Associated Lab Sa	mples: 92415385	003				
METHOD BLANK:	1600149	Matrix: Water				
Associated Lab Sa	mples: 92415385	003				
Para	meter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-228		0.313 ± 0.323 (0.669) C:80% T:88%	pCi/L	02/07/19 14:03		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	CHAR	AH BRICKHAVEN				
Pace Project No .:	924153	85				
QC Batch:	3283	Analysis Method:	EPA 903.1			
QC Batch Method:	EPAS	003.1 Analysis Description:	903.1 Radiu	m-226		
Associated Lab Sa	nples:	92415385002, 92415385003, 92415385004, 9241538500 92415385009, 92415385010, 92415385011, 9241538501 92415385016	,	, ,	,	
METHOD BLANK:	159826	8 Matrix: Water				
Associated Lab Sar	nples:	92415385002, 92415385003, 92415385004, 9241538500 92415385009, 92415385010, 92415385011, 9241538501 92415385016	,	, ,	,	
Para	neter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers	
Radium-226		0.210 ± 0.357 (0.631) C:NA T:90%	pCi/L	02/07/19 20:27		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

- PASI-A Pace Analytical Services Asheville
- PASI-C Pace Analytical Services Charlotte
- PASI-PA Pace Analytical Services Greensburg

ANALYTE QUALIFIERS

- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92415385002	LEACHATE	EPA 3010A	454679	EPA 6010D	454703
92415385003	SW-2	EPA 3010A	454679	EPA 6010D	454703
2415385004	SW-1	EPA 3010A	454679	EPA 6010D	454703
2415385005	BG-1	EPA 3010A	454679	EPA 6010D	454703
2415385006	BG-2	EPA 3010A	454679	EPA 6010D	454703
2415385007	MW-4	EPA 3010A	454679	EPA 6010D	454703
2415385008	MW-2	EPA 3010A	454679	EPA 6010D	454703
2415385009	MW-8	EPA 3010A	454679	EPA 6010D	454703
2415385010	MW-6	EPA 3010A	454679	EPA 6010D	454703
2415385011	DUP	EPA 3010A	454679	EPA 6010D	454703
2415385012	MW-5	EPA 3010A	454679	EPA 6010D	454703
2415385013	MW-1	EPA 3010A	454679	EPA 6010D	454703
2415385014	MW-7R	EPA 3010A	454679	EPA 6010D	454703
2415385015	MW-3	EPA 3010A	454679	EPA 6010D	454703
2415385016	EQUIP BLANK	EPA 3010A	454679	EPA 6010D	454703
2415385002	LEACHATE	EPA 3010A	454686	EPA 6020B	454710
2415385003	SW-2	EPA 3010A	454686	EPA 6020B	454710
2415385004	SW-1	EPA 3010A	454686	EPA 6020B	454710
2415385005	BG-1	EPA 3010A	454686	EPA 6020B	454710
2415385006	BG-2	EPA 3010A	454686	EPA 6020B	454710
2415385007	MW-4	EPA 3010A	454686	EPA 6020B	454710
2415385008	MW-2	EPA 3010A	454686	EPA 6020B	454710
2415385009	MW-8	EPA 3010A	454686	EPA 6020B	454710
2415385010	MW-6	EPA 3010A	454686	EPA 6020B	454710
2415385011	DUP	EPA 3010A	454686	EPA 6020B	454710
2415385012	MW-5	EPA 3010A	454686	EPA 6020B	454710
2415385013	MW-1	EPA 3010A	454686	EPA 6020B	454710
2415385014	MW-7R	EPA 3010A	454686	EPA 6020B	454710
2415385015	MW-3	EPA 3010A	454686	EPA 6020B	454710
2415385016	EQUIP BLANK	EPA 3010A	454686	EPA 6020B	454710
2415385002	LEACHATE	EPA 7470A	454874	EPA 7470A	454974
2415385003	SW-2	EPA 7470A	454874	EPA 7470A	454974
2415385004	SW-1	EPA 7470A	454874	EPA 7470A	454974
2415385005	BG-1	EPA 7470A	454874	EPA 7470A	454974
2415385006	BG-2	EPA 7470A	454874	EPA 7470A	454974
2415385007	MW-4	EPA 7470A	454874	EPA 7470A	454974
2415385008	MW-2	EPA 7470A	454874	EPA 7470A	454974
2415385009	MW-8	EPA 7470A	454874	EPA 7470A	454974
2415385010	MW-6	EPA 7470A	454874	EPA 7470A	454974
2415385011	DUP	EPA 7470A	454874	EPA 7470A	454974
2415385012	MW-5	EPA 7470A	454874	EPA 7470A	454974
2415385013	MW-1	EPA 7470A	454874	EPA 7470A	454974
2415385014	MW-7R	EPA 7470A	454874	EPA 7470A	454974
2415385015	MW-3	EPA 7470A	454874	EPA 7470A	454974
92415385016	EQUIP BLANK	EPA 7470A	454874	EPA 7470A	454974
2415385001	TRIP BLANK	EPA 8260B	454833		
	LEACHATE	EPA 8260B	454833		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92415385003	SW-2	EPA 8260B	454833		
92415385004	SW-1	EPA 8260B	454833		
92415385005	BG-1	EPA 8260B	454833		
92415385006	BG-2	EPA 8260B	454833		
92415385007	MW-4	EPA 8260B	454833		
92415385008	MW-2	EPA 8260B	454833		
92415385009	MW-8	EPA 8260B	454833		
92415385010	MW-6	EPA 8260B	454833		
92415385011	DUP	EPA 8260B	454833		
92415385012	MW-5	EPA 8260B	454833		
92415385013	MW-1	EPA 8260B	454833		
92415385014	MW-7R	EPA 8260B	454833		
92415385015	MW-3	EPA 8260B	454833		
92415385016	EQUIP BLANK	EPA 8260B	454833		
92415385002	LEACHATE	EPA 903.1	328348		
92415385003	SW-2	EPA 903.1	328348		
92415385004	SW-1	EPA 903.1	328348		
92415385005	BG-1	EPA 903.1	328348		
92415385006	BG-2	EPA 903.1	328348		
92415385007	MW-4	EPA 903.1	328348		
92415385008	MW-2	EPA 903.1	328348		
92415385009	MW-8	EPA 903.1	328348		
92415385010	MW-6	EPA 903.1	328348		
92415385011	DUP	EPA 903.1	328348		
92415385012	MW-5	EPA 903.1	328348		
92415385013	MW-1	EPA 903.1	328348		
92415385014	MW-7R	EPA 903.1	328348		
92415385015	MW-3	EPA 903.1	328348		
92415385016	EQUIP BLANK	EPA 903.1	328348		
92415385002	LEACHATE	EPA 904.0	328350		
92415385003	SW-2	EPA 904.0	328833		
92415385004	SW-1	EPA 904.0	328350		
92415385005	BG-1	EPA 904.0	328350		
92415385006	BG-2	EPA 904.0	328350		
92415385007	MW-4	EPA 904.0	328350		
92415385008	MW-2	EPA 904.0	328350		
92415385009	MW-8	EPA 904.0	328350		
92415385010	MW-6	EPA 904.0	328350		
92415385011	DUP	EPA 904.0	328350		
92415385012	MW-5	EPA 904.0	328350		
92415385013	MW-1	EPA 904.0	328350		
92415385014	MW-7R	EPA 904.0	328350		
92415385015	MW-3	EPA 904.0	328350		
92415385016	EQUIP BLANK	EPA 904.0	328350		
92415385002	LEACHATE	Total Radium Calculation	329546		
92415385003	SW-2	Total Radium Calculation	329546		

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CHARAH BRICKHAVEN

Pace Project No.: 92415385

92415385004 SW-1 Total Radium Calculation 329546 92415385005 BG-1 Total Radium Calculation 329546 92415385006 BG-2 Total Radium Calculation 329546 92415385007 MW-4 Total Radium Calculation 329546 92415385008 MW-2 Total Radium Calculation 329546 92415385009 MW-8 Total Radium Calculation 329546 92415385010 MW-6 Total Radium Calculation 329546	
92415385006 BG-2 Total Radium Calculation 329546 92415385007 MW-4 Total Radium Calculation 329546 92415385008 MW-2 Total Radium Calculation 329546 92415385009 MW-8 Total Radium Calculation 329546	
92415385007 MW-4 Total Radium Calculation 329546 92415385008 MW-2 Total Radium Calculation 329546 92415385009 MW-8 Total Radium Calculation 329546	
92415385008 MW-2 Total Radium Calculation 329546 92415385009 MW-8 Total Radium Calculation 329546	
92415385009 MW-8 Total Radium Calculation 329546	
92415385010 MW-6 Total Radium Calculation 329546	
92415385011 DUP Total Radium Calculation 329546	
92415385012 MW-5 Total Radium Calculation 329546	
92415385013 MW-1 Total Radium Calculation 329546	
92415385014 MW-7R Total Radium Calculation 329546	
92415385015 MW-3 Total Radium Calculation 329546	
92415385016 EQUIP BLANK Total Radium Calculation 329546	
92415385002 LEACHATE SM 2540C-2011 454658	
92415385003 SW-2 SM 2540C-2011 454658	
92415385004 SW-1 SM 2540C-2011 454658	
92415385005 BG-1 SM 2540C-2011 454658	
92415385006 BG-2 SM 2540C-2011 454658	
92415385007 MW-4 SM 2540C-2011 454658	
92415385008 MW-2 SM 2540C-2011 454658	
92415385009 MW-8 SM 2540C-2011 454658	
92415385010 MW-6 SM 2540C-2011 454659	
92415385011 DUP SM 2540C-2011 454659	
92415385012 MW-5 SM 2540C-2011 455139	
92415385013 MW-1 SM 2540C-2011 455139	
92415385014 MW-7R SM 2540C-2011 455139	
92415385015 MW-3 SM 2540C-2011 455488	
92415385016 EQUIP BLANK SM 2540C-2011 455488	
92415385002 LEACHATE EPA 300.0 Rev 2.1 1993 455292	
92415385003 SW-2 EPA 300.0 Rev 2.1 1993 455292	
92415385004 SW-1 EPA 300.0 Rev 2.1 1993 455292	
92415385005 BG-1 EPA 300.0 Rev 2.1 1993 455292	
92415385006 BG-2 EPA 300.0 Rev 2.1 1993 455292	
92415385007 MW-4 EPA 300.0 Rev 2.1 1993 455292	
92415385008 MW-2 EPA 300.0 Rev 2.1 1993 455292	
92415385009 MW-8 EPA 300.0 Rev 2.1 1993 455292	
92415385010 MW-6 EPA 300.0 Rev 2.1 1993 455292	
92415385011 DUP EPA 300.0 Rev 2.1 1993 455292	
92415385012 MW-5 EPA 300.0 Rev 2.1 1993 455292	
92415385013 MW-1 EPA 300.0 Rev 2.1 1993 455292	
92415385014 MW-7R EPA 300.0 Rev 2.1 1993 455292	
92415385015 MW-3 EPA 300.0 Rev 2.1 1993 455292	
92415385016 EQUIP BLANK EPA 300.0 Rev 2.1 1993 455292	

REPORT OF LABORATORY ANALYSIS

	D.	Docur Sample Conditio	ment Name:		Document Revised: February 7, 2018	
	Pace Analytical "		ment No.:	eipt(SCOR)	Page 1 of 2 Issuing Authority:	
L		13-97854410 T2085	S-033-Rev.0	6	Pace Carolinas Quality Office	
Laborator	y receiving samples:				the sale and a dame of the	
-	Asheville Eden	Greenwood 🗌]	Huntersville	Raleigh Mechanicsvill	le 🗌
Sample Co Upon Re		DR		Project #:	WO#:92415385	
Courier:	Gial Pace	PS USPS		Client	92415385	
Custody Seal F	Present? 🗍Yes 🗍No S	eals Intact?	es In	No	Date/Initials Person Examining Contents:	-25
Packing Mater					bace/initials reison examining contents:///	
[hermometer:		Bubble Bags N	lone 🗌	Other]Blue □N	Biological Tissue Frozen?	
	1. 10.102	1995	11			
Cooler Temp C	orrected (°C):	tor: Add/Subtract (°C		ha	should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling pro s begun	cess
	inate in a quarantine zone within the U No	nited States: CA, NY, o	r SC (check m		mples originate from a foreign source (internationally, ing Hawaii and Puerto Rico)? Yes No	
Chain of Cu	ustody Present?				Comments/Discrepancy:	
	rived within Hold Time?			1.		
	Time Analysis (<72 hr.)?	Yes No		2.		
	Around Time Requested?			3.		
		Yes No	D □N/A	4		
Sufficient V) □N/A	5.		
	ntainers Used? ntainers Used?	Yes No	7,55557.0	6.		
Containers	Intact?	Yes No		7.		
	nalysis: Samples Field Filtered?	Yes No		8.		
Sample Labe	els Match COC?	Yes No		9.		
-Includes	Date/Time/ID/Analysis Matrix:	UT				
Headspace i	n VOA Vials (>5-6mm)?			10.		-
Trip Blank Pr	resent?			10.		
Trip Blank Cu	ustody Seals Present?		□n/a			
COMMENTS/SA	APLE DISCREPANCY 7 continer (RAD	s) Slight	ly of	ut of	Field Data Required? Yes No pH Range = 2.5	
ENT NOTIFICAT	ION/RESOLUTION			Lot ID of sp	lit containers:	
erson contacte	ed:		_ Date/Tin	ne:		
Project Mana	ger SCURF Review:				Date:	
Project Mana	ger SRF Review:					
					Date:	

			/-	P	2 ace/	Inaly	tical®	0		Sa	ample	e Con	dition Docu	Upo ment	lame: n Rec No.: -Rev.(eipt(CUR)		D		lss	Page uing /	e 1 of Autho			018		
	veri sam Excep	fied ples	and : VOA	with	in th	roc, c	cept	ance Grea	se, DR	or de ge fo 0/801 of bo	r pre	eserv	vatio	n		Pr	ojec)# KLH	11 92	92 -HDI	24. D	1 5	53 Date	84	2/0	1/:
the second s	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	4G3A(DG3A)- 250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U- 40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	(ADJ	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1			¥	~	21	85	KI							$\overline{\langle}$		27B	-	2		>	>	S	S	\swarrow	B	Ā	3	ă
	\sum	1	1		\sum	X	\sum						\backslash	\backslash	\bigvee	3								X	$\overline{)}$			
	\square	Ĭ	1		\sum	2	\sum	\mathbf{n}					\sum	\backslash		3								X				
	\sum	1	1		\sum	2	\backslash	\backslash			\backslash		\square	\square	\backslash	3						-		X				
_	$\left\{ \right\}$	- -	V		$\langle \rangle$	2	$\langle \rangle$	\backslash			\backslash		\mathbf{A}	\square	\sum	3								X				
-	$\left\{ \right\}$	Y	ł		$\langle \rangle$	2	$\langle \rangle$	\downarrow			\downarrow		\downarrow	\downarrow	\backslash	3							-	X	\backslash			
	$\left\langle \right\rangle$	1	1		$\langle \rangle$	3	\rightarrow	\rightarrow		_	\mathbf{A}		\downarrow	X	\backslash	5	_							X	\backslash			
-	$\left\langle \right\rangle$	1				\mathcal{A}	\rightarrow	\rightarrow		-	Y	-	\downarrow	X	\mathbf{A}	5							2	M	\backslash			
	$\overline{)}$	1	1	\neg	$\left\langle \right\rangle$	2	\rightarrow	$\left \right $			\mathbf{A}	ng	5/2	A.	\mathbf{Y}	5	_						2	X	\backslash			
1	$\overline{}$	1	1	-			\uparrow	+			$\overline{)}$	\neg	$\left \right $	\mathbf{A}	\mathbf{Y}	3	_							X	\downarrow			
+			,	-	$\langle \rangle$	4	\uparrow	$\overline{)}$		-	+		X	X	1	5								X	\setminus		_	

		pH Ac	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

.

Pace Analytical"	Document Name: Sample Condition Upon Receipt(SCUR)	Document Revised: February 7, 2018 Page 1 of 2
	Document No.:	Issuing Authority:
	F-CAR-CS-033-Rev.06	Pace Carolinas Quality Office

Project #

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

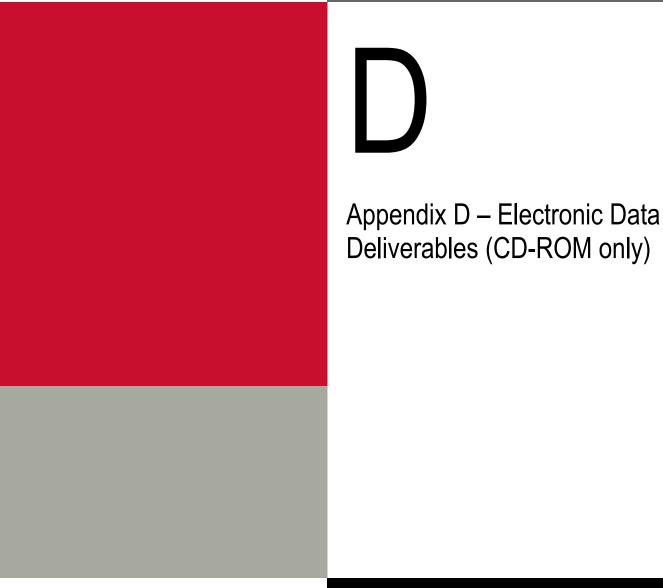
PM: KLH1 Due Date: 02/01/19 CLIENT: 92-HDR

WO#:92415385

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg **Bottom half of box is to list number of bottle

Γ

			1	1				-																					
	ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	KAPS	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1			1	1			\sum		\backslash			\langle		\backslash	$\overline{)}$		3	-	-	-	-	-	-	~	1		4	>	-
2			1	1		\backslash	XY	$\overline{)}$			_	$\overline{)}$			$\overline{)}$	$\overline{)}$	3								2	$\overline{)}$			
3		$\overline{)}$	1			$\overline{)}$	A		$\overline{)}$			$\overline{)}$				$\overline{}$	-								\geq				
4		$\overline{)}$	1				9					$\overline{)}$					3		_		_				Δ	\backslash			
5		\rightarrow	/	1			N.	X	\rightarrow			\backslash		\sum	\backslash	\backslash	3							1	X	\backslash			
6		\setminus				\sum	\backslash	\backslash	\backslash			\backslash		\backslash	\backslash	\backslash									\backslash				
		\setminus				\backslash	\backslash	V	\backslash			\bigvee		\bigvee	\bigvee	\backslash										$\overline{)}$			
7					Ĩ	\backslash	\backslash	\sum														1					+	\neg	\neg
8															$\overline{)}$	$\overline{)}$				\uparrow	+				$\overline{)}$	$\overline{)}$		+	-
9									$\overline{)}$			$\overline{)}$				$\overline{)}$		-					+		$\overline{)}$	$\overline{)}$		+	
10						$\overline{)}$	$\langle \rangle$			+				\uparrow		$\overline{)}$	-	_							$\left \right\rangle$	Y	-	_	_
11		1	+					\mathbf{X}			-	$\overline{)}$	+	X	+	$\left(\right)$		_					_		X	Y		+	
12	K	+		-+	-		\mathbf{X}	X	Y		+	1	-	X	X	\rightarrow				-					Ă,	\backslash			
						\setminus	\setminus	V	\backslash			V		V	\backslash	N									\backslash				


	1	pH Ac	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Method Section 2001	A following: Set an weak Set an weak Set and weak Se	d on		DATE Signed:		24000	SIGNATURE of SAMPLER:	SIGNATUR				
Art Area Manuality Both of a	A Restance Control Control (Section 2) Control (Sectio		and the second second second				e of SAMPLER:	PRINT Nam				
A. Constrained Define Sector Sector <th< th=""><th>Answer Serial Stratu Chance of the series Series</th></th<> <th></th> <th></th> <th></th> <th></th> <th>JRE</th> <th>AND SIGNATI</th> <th>SAMPLER NAME</th> <th></th> <th>_</th> <th></th> <th></th>	Answer Serial Stratu Chance of the series					JRE	AND SIGNATI	SAMPLER NAME		_		
A.A. Section B Sec	A Relinguing Technologie Serie Technologie Technologie Serie Technologie Technolog											
A.A. Section B Section B Section B Section C Section C Section C Page 1	Far Jung Chan Control	2.5					3		2			
A. Setter B Setter B Besting Control (Control	Analysis CHANNOF COLSCUT / Analytical Request Document Analysis Setting 1 Setting 2 Setting 2 <thsetting 2<="" th=""> Setting 2 Setit 2 Setit 2 Seti</thsetting>	AN L 25	19 (~	Q 1.75-	mill	1		- HAR	2 March			
A A Settion B Settion C Sett	And And State State State and State State And State Sta	SAMPLE CONDITIONS				TIME	DATE	Y / AFFILIATION	RELINQUISHED E		ADDITIONAL COMMENTS	
A.A. Setting S	Parameter Sector P	97		XXX	3	2 4			+ + 1/29			12
And Section B Section B Section C Description Description Prove the information Provide the informat	Machinetics Section B Section B Section B Section C	011		XXX		4		191250 -	42/1 1			1.11
A.A. Section B Section B Section C Sec	Restanges Section B Section C Section C <t< td=""><td>010</td><td></td><td>XXX</td><td></td><td>1</td><td></td><td>111150</td><td>1/23/</td><td></td><td>0.10</td><td>宛得 已</td></t<>	010		XXX		1		111150	1/23/		0.10	宛得 已
A.A. Settion B Regular Project Information: Settion B Regular Project Information: Settion C Regular Project Information: Settion Project Information: Setion Project Informatintet Project Project Informatio	Faculation Section B Section B Section B Section C <			2		1		1 1100			Mul-1	1340
A.A. Section B requirementation: Section B requirementation: Section B requirementation: Section C requirementation: Secinc C req req Secinc C requirementation:	Final digital CHAIN-OF CUSTOPY Analytical Request Document NA Setion B Setion C Setion C Setion C minimum Request Information: Request Information: Setion C Setion C minimum Request Information: Request Information: Information: Setion C minimum Request Information: Information: Information: Information: Information: Request Document minimum Request Information: Information	2011		XXXX	ちん	2		lie ino	1/27		Mi-K	制
AA Settin B Settin B Provide Topolar Failed Topolar Settin B Provide Topolar Failed Topolar Settin B Provide Topolar Failed Topolar Failed Topolar Failed Topolar Provide Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Provide Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Provide Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Provide Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Provide Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Provide Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Sample Address Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Sample Address Failed Topolar Failed Topolar Failed Topolar Failed Topolar Failed Topolar Sample Address Failed Topolar Failed Topolar Failed Topolar Failed Topolar </td <td>Faculation CHAIN-OF CUSTOPY Analytical Request Document NA Settine B Settine B Settine Custopy is a LEGAL DOCUMENT. All relevant fields must be completed accurately:</td> <td>004</td> <td></td> <td>×××××</td> <td>~</td> <td>4 2</td> <td></td> <td>140970 -</td> <td>1/23</td> <td></td> <td>5.</td> <td>8</td>	Faculation CHAIN-OF CUSTOPY Analytical Request Document NA Settine B Settine B Settine Custopy is a LEGAL DOCUMENT. All relevant fields must be completed accurately:	004		×××××	~	4 2		140970 -	1/23		5.	8
AA Section B Section P Request Number Request Numer Request Number <t< td=""><td>Packages CHAIL OF CUSTOPY / Analytical Request Document model of the thomation: Series B Required Project Hormation: Series B Required Project Hormation: Series C Required Project Hormati</td><td>400</td><td></td><td></td><td>ω</td><td>2 4</td><td></td><td>- Sht1 5/</td><td>1/22</td><td></td><td>1</td><td>7</td></t<>	Packages CHAIL OF CUSTOPY / Analytical Request Document model of the thomation: Series B Required Project Hormation: Series B Required Project Hormation: Series C Required Project Hormati	400			ω	2 4		- Sht1 5/	1/22		1	7
A. Settion B red Client Hormation: Register Register Register Settion C Register Register Settion C Register Register Register Settion C Register Register Settion C Register Register Settion C Register Register Settion C Register Register Register Settion C Register Register Register Register Settion C Register Registe	Production Section B Section B Section B norm File Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program Required Program norm Required Program Required Program Required Program <td>200</td> <td></td> <td>XXXXX</td> <td>3</td> <td>2 4</td> <td></td> <td>19 13-15 -</td> <td>22/1</td> <td></td> <td></td> <td>6</td>	200		XXXXX	3	2 4		19 13-15 -	22/1			6
AA Setting Project Information: Regulard Project Information: Regulard Project Information: Regulard Project Information: Internation: Fax Project Information: Fax Project Information: Fax Project Information: Fax Internation: Fax Project Information: Project Information: Project Information: Fax Project Information: Fax Internation: Fax Project Information: Project Information: Project Information: Fax Project Information: Fax Internation: Fax Project Information: Project Information: Project Information: Fax Fax Fax Fax Internation: Fax Project Information: Project Information: Fax Fax </td <td>Findulation Section B Section C nr High Report Filter Report Filter Report Filter nr Name Report Filter Report Filter Report Filter</td> <td>Sor</td> <td></td> <td>X</td> <td></td> <td>2 4</td> <td></td> <td></td> <td>1/22</td> <td></td> <td>1-45</td> <td>5</td>	Findulation Section B Section C nr High Report Filter Report Filter Report Filter nr Name Report Filter Report Filter Report Filter	Sor		X		2 4			1/22		1-45	5
A Clean Information: Required Project Information: Required Projec	Facultation Section B requirement for the Chain-of Custory is a LEGAL DOCUMENT. An relevant fields must be completed accurately. An Section B requirement fields must be completed accurately. NA Section B requirement fields must be completed accurately. Na Section B requirement fields must be completed accurately. Internation: France field Project Information: Section C mode filtered fields must be completed accurately. Internation: France field Project Information: France field Project Information: Internation: France field Registration Constant fields must be completed accurately. Internation: France field Registration France field Registration France field Registration Internation: France field Registration France field Registration France field Registration Internation: France field Registration France field Registration Regulatory Agency Registration Internation: France field Registration France field Registration Regulatory Agency Registration Internation: France field Registration France field Registration Regulatory Agency Registration Internation: France field Registration Regulatory Agency Registration Regulatory Agency Registration Internation: France field Registration Regulatory Agency Registration Regulatory Agency Registration </td <td>004</td> <td></td> <td>X X X</td> <td>8</td> <td>1 4</td> <td></td> <td></td> <td>1/2.</td> <td></td> <td>2 5</td> <td>4</td>	004		X X X	8	1 4			1/2.		2 5	4
A Clean Information: Required Project Information: Required Projec	Fasculation Enclained Functional Control Functional Control Functional Control Function Fu	800		XXX		2 4		141400 -	1/21		1	ω
A Section B Section C Contrainer (VIN) Section C Contrainer (VIN) Sample ta must be unique The BLANK Contrainer (VIN) Contr	Characterization Required Project Information: The Characterization of the second section B Required Project Information: Insole Informatio: Insole Info	~		XXX		1 1		14 1320			the Carencity	2
A Section B Section B Section C Concernation: Required Project Information: Required Project Inf	CHAIN-OF-CUSTOPY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. and editation mode information: Section B required Project Information: Section B required Project Information: Section C mode information: Page: 1 Of Company Name r 40 SCHURCH STREET Copy 10 Copy 10 Company Name Company Name Page: 1 Of Company Name r Fax Project Name Name Project Name Name Page: 1 Of Company Name Page: 1 Of Company Name Page: 1 Of Company Name isout Date Fax Project Name Name Page Outline Page: 1 Of Page Pagingt Manager Name Page: 1 Of isout Date Fax Project Name Name Page Pagingt Manager Name Name <td>8</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>0001 111</td> <td>2</td> <td></td> <td>1</td> <td></td>	8			1			0001 111	2		1	
A Section B ed Client Information: Required Project Information: r: HOR r:	CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. N Assetion B Required Project Information: Required Project Information: No Colspan="2">Project Information: Project Information: No Colspan="2">Required Project Information: Project Information: Project Information: No Colspan="2">Required Project Information: Project Information: Project Information: Information: Project Information: Project Information: No Colspan="2">Requisitory Agency Requisitory Agency Project Information: Project Information: No Sample Is an usation of the project Information: No Requisitory Agency No Sample Is an usatio project Information: No Sample Is an usation project Information: Project Information: No Collection No Project Inform	F		3 2 F 6	 			0	5		3	「日本の
A Section B Section C ed Client Information: Required Project Information: Required Project Information: Invoice Information: nv HDR Required Project Information: Invoice Information: Page : 1 Of s: 440 S CHURCH STREET Copy To: VACOB RUFFING Attention: Page : 1 Of ied Due Date: Fax Project Name: Charab Brickhaven Pace Project Manager: Requised Analysis Filtered (VIN) Regulatory Agency ied Due Date: Project X Project X Project X State / Location winne win doi 10 fb(b) COLLECTED Preservatives X No winne win doi 10 fb(b) COLLECTED Preservatives X Intender (VIN) No	CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. A Section B Section C Add Schullech streEET Copy Te: Copy Te: Section C O, CHARLOTTE, NC 28202 Project Manes: Regulatory Agency Opic Name: Charle Brickhaven Page Oule: NC New Name: New Name: New Name: No New Name: New Name: No New Name: New Name: No No No No No No No											

Chainof Custody is a LEGAL DOCUMENT - Complete all relevent fields St Contained St Enail To: State: County/Giv: The Zone Collected: State Collection Info/Address: County/Giv: The Zone Collected: Unable #: Collection Info/Address: County/Figure Monitoring? Diverse To Day [1] New Day [1] S Day Micro Monitoring? [1] Day [1] ADay [1] ADay [1] S Day Analysis: County/No (Unable I) States Santy Composite End Graph Collected for Oute The Collected for Composite Santy Composite End Graph Collected for Composite Santy Composite End Graph Collected for Composite Santy Composite End Graph Collected Used: Web Blue Dry None Stoter House Received Graph Collect Used: Web Blue Dry None Stoter House Received (SOO com): Y No Packing Material Used: Web Blue Dry None Stoter House Received by/Company: (Signature) Date/Time: Received by/Company: (Signature) Date/Time: Received by/Company: (Signature) Date/Time: Received by/Company: (Signature) Date/Time: Received by/Company: Signature) Date/Time: Date/Time: Composite State S	Trip Blank Received: (Y) N	Drohonin						Date /Ti	cure)	
Anthy is IEER LOCUMENT - Complete all relevant fields PH: KLH Due Date: 02/01/19 Billing information: Chilton: School - Sc	r Cooler 1 Therm Corr. Factor: 12 Cooler 1 Corrected Temp: Comments: Comments:	I lemplate:		-						luished by/Company: (Signature)
Antide is LEGAL ODCUMENT - Complete all relevent rields PH: KLH Due Date: 02/01/19 Building information: Final To: Y Cch Kry @ Jul. 1 // C (Jr) Container Presenter Type - Information: Information: Site: Control To: Directed: Container Presenter Type - Information: Information: Information: Site: Control To: Directed: Container Presenter Type - Information: Information: Information: Site: Control To: Directed: Container Presenter Type - Information: Information: Information: Site: Control To: Directed: Container Presenter Type - Information: Information: Information: Site: Container Presenter Type - Information: Information: Information: Information: Site: Container Presenter Type - Information: Information: Information: Information: Site: Container Presenter Type - Information: Information: Information: Information: Site: Container Presenter Type - Information: Information: Information: Information: Site: Container Presenter Type - Information: Information: Information: Information: Site: Container Presenter Type - Information: Information: Information: Information: Site: Con	Cooler 1 Therm Corr. Factor: 1/2 Cooler 1 Therm Corr. Factor: 1/2 Cooler 1 Corrected Temp: Comments:	Acctnum:	me:	Date/Ti	re)	eived by/Company: (Signatu		Date/II	ture)	
Anster is JEGAL DOCUMENT - Complete all relevent rields PH: KLH Due Date: 02/01/19 Image information: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection info/Address: Image information: Image information: Image information: Site Cilection: Image information: Image information: Image information: Image information: Site Cilection: Image information: Image information: Image information: Image information: Site Cilection: Image information: Image information: Image information: Image information: Image information:	Cooler 1 Therm Corr. Factor:	Table #:	LAN DI	717)	man 1	-	4 . 1		hed hy/commany: Isianat
andly is a Efab LOCUMENT - Complexe all relevent fields PIT: KL1 Due Date: 02/07/19 Billing information: Image informating information: Image information: <td>Cooler 1 Therm Corr. Factor:</td> <td>MTJL LA</td> <td>me:</td> <td>Date/T</td> <td>re)</td> <td>eived by/Company: (Signatu</td> <td>1700</td> <td>Date/T</td> <td>PO -</td> <td>H Martine II</td>	Cooler 1 Therm Corr. Factor:	MTJL LA	me:	Date/T	re)	eived by/Company: (Signatu	1700	Date/T	PO -	H Martine II
Analysis LEAN_DOCUMENT - Complete all relevent fields PIT: KLH Due Date: 02/01/19 Billing unormation: Interview field ULENT: 92-H0R Interview field Site Collection Fib/Address: Example Collection Interview field Interview field Interview field Site Collection Fib/Address: Example Collection Interview field Interview field Interview field Site Collection Fib/Address: Example Collection Interview field Interview field Interview field Site Collection Fib/Address: Example Collection Interview field Interview field Interview field Site Collection Fib/Address: Example Collection Interview field Interview field Interview field Site Collection Fib/Address: Example Collection Interview field Interview field Interview field Site Collection Fib/Address: Example Collection Fib/Address: Example Collection Interview field Interview field Site Collection Fib/Address: Example Collection Fib/Address: Example Collection Fib/Address: Interview field Interview field Site Collection Fib/Address: Example Collection Fib/Address: Example Collection Fib/Address: Interview field Site Collection Fib/Address: Example Collection Fib/Address: Examp	3 0	Causian	ups	Samples reu FEDEX	NA	¥	adchem sample(s) scre	2		hed hv/Commany. (Signat
Analysis at EdAL DOCUMENT - Complete all relevant fields Pf: KLH1 Due Date: 02/01/19 Billing Information: Enalling: Container Presevoire Type: 1 Information: Information: Information: Information: State: County/City: The Zone Olected: Information: Information: Information: Information: Information: State: County/City: The Zone Olected: Information: Informat	Temp Blank Received: Therm ID#: 97764		Ng #:	Lab Trackir			acking infaterial Osed:	1 -		
State Container Pir: KLH1 Due Date: 02/01/19 Sile Container Pier MC MC MC MC MC Sile Container Pier MC MC MC MC MC Sile Container Pier MC MC MC MC MC MC Sile Container Pier MC MC MC Montoning Montoning Mit Sile Container MC MC MC MC Montoning Montoning Mit Montoning Mit Sile Container MC MC MC Montoning Montoning Montoning Mit Montoning Mit Mit Montoning Mit Montoning Mit Montoning Mit Mit Montoning Mit Montoning Mit Montoning Mit Montoning Mit Mit Mit Mit Mit Montoning Mit Mit <t< td=""><td></td><td>۲ N</td><td>LDS PRESENT</td><td>SHORT HO</td><td>ne</td><td>Blue Dry</td><td>ype of ice used: W</td><td></td><td></td><td></td></t<>		۲ N	LDS PRESENT	SHORT HO	ne	Blue Dry	ype of ice used: W			
PM: KLH1 Due Date: 02/01/19 Container Preservative Type: Iab Project Manager: Intra-cld, 21 sufficient cald, 2									ditions / Possib	r Remarks / Special Conc
PM: KLH1 Due Date: 02/01/19 Curtainer Preservative Type: Container Preservative Type: Iab Project Manager: INY Ing? Immenantive Type: Indicated. (2) sulfuic acid. (2) hydroxide. (3) hydroxide										
Pm: KLH1 Due Date: 02/01/19 Container Preservative Type: Image: Indextre transmitter Type: Image: Indextre	0/6	×	×	×	100					-
Pmt: KLH1 Due Date: 02/01/19 Container Preservative Type: Image: Image: Image: Image: Imag	510	×	-	X	-		dia 1	Euch	64/	2p Blank
Pm: KLH1 Due Date: 02/01/19 Container Preservative Type: Image: Image: Image: Image: Image: Image: Image: <td< td=""><td>N/0</td><td>×</td><td>1</td><td>1</td><td>10 00</td><td></td><td>14</td><td>の許い</td><td>GW</td><td>W-3</td></td<>	N/0	×	1	1	10 00		14	の許い	GW	W-3
PM: KLH1 Due Date: 02/01/19 CliENT: S2-HDR NLY Container Preservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Ing? Impreservative Type: Analyses Impreservative Type: Impreservative Type: Impreservative Type: Ing? Analyses Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Ing? Analyses Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Ing? Analyses Impreservative Type: Impreservative Type: Impreservative Type: Impreservative Type: Ing? Int ICT I/TET Analyses Impreservative Type: Impreservative Type: Impreservative Type: Ing? Inter: Inter: Impreservative Type: Impreservative Type: Impreservative Type: Ing?	210		X	X	1		10	61.0	Gw	Jt-JL
PM: KLH1 Due Date: 02/01/19 CliENT: S2-HDR NLY Container Preservative Type: Initic acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) sulfuric acid. (3) hydrochloric acid. (4) sodium hydroxide. (5) zinca NLY Inite acid. (2) Sulfuric acid. (3) hydrochloric acid. (5) zinca NLY		6	R	3	1	+	à	Gish	61	1W-1
vent fields PM: KLH1 Due Date: 02/01/19 Clientr: S2-HDR Clientr: NIX Container Preservative Type: Image: Image: Image: Image: Container Preservative Type: Image: Image: Image: Container Type: Image: Image: Image: <td< td=""><td>USE ONLY: Sample #</td><td>020</td><td>adic, 010/</td><td>00.0</td><td>Ctns # of</td><td></td><td>Collected (or Composite Start)</td><td>* Grab</td><td>Matrix</td><td>stomer Sample ID</td></td<>	USE ONLY: Sample #	020	adic, 010/	00.0	Ctns # of		Collected (or Composite Start)	* Grab	Matrix	stomer Sample ID
It fields PM: KLH1 Due Date: 02/01/19 CLIENT: 92-HDR CLIENT: 92-HDR NLY AC: Container Preservative Type:: Lab Project Manager: NLY "Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc ace (1) methanol, (7) sodium hisulfate, (8) sodium thisulfate, (9) hexane, (A) ascorbic acid, (8) ammonium sulfate acted: Analyses Analyses Lab Profile/Line: 1 CT I/ ET Analyses Lab Sample Receipt Checkli 1 CT C. 2 Q T Lab Sample Receipt Checkli 1 CE: Y Y Custody Seals Present/Inta 1 CE: Y Y Custody Signatures Present 1 C: Y Y Custody Signature Present 1 C: Y Y Custody Signature Present 1 C: Y Y Y 1 C: Y <td>esent te Strips:</td> <td>- B,</td> <td>n 2 747</td> <td>2</td> <td>F</td> <td>3W), Wastewater (WW), Vapor (V), Other (OT)</td> <td>(DW), Ground Water ((sue (TS), Bioassay (B),)</td> <td>VP), Air (AR), Tis</td> <td>il (OL), Wipe (V</td> <td>rict (P), Soil/Solid (SL), Oi</td>	esent te Strips:	- B,	n 2 747	2	F	3W), Wastewater (WW), Vapor (V), Other (OT)	(DW), Ground Water ((sue (TS), Bioassay (B),)	VP), Air (AR), Tis	il (OL), Wipe (V	rict (P), Soil/Solid (SL), Oi
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/08/119 OS CALCAS+ Billing Information: Information: Container Preservative Type: Information: NLY OS CALCAS+ Email To: Called: Called	Acceptable	Lì	26,	<i>CI</i> ,		Analysis:	rges Apply)	(Expedite Cha		Hold: Atrix Codes (Insect in Mature
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 OS Charch S+ Billing Information: Container Preservative Type LIENT: 92-HDR NLY S Church S+ Email To: C c c b. Charch S+ Container Preservative Type Ise Callection Info/Address: NLY Nume/Number: Site Collection Info/Address: Site Collected: Complete Collected: Preservative Type Ise Collected: Preservative Type Ise Project Manager: Nth: Site/Facility ID #: Complete Monitoring? Complete Monitoring? Complete Monitoring? Ise Profile/Line: Ise SampLe Receipt Check1.1 Nth: Purchase Order #: DW PWS ID #: DW Docation Code: Costed SampLe Receipt Check1.1 Numer: Turnaround Date Required: MP PWS ID #: DW Docation Code: Costed SampLe Receipt Check1.1 Numer: Turnaround Date Required: My Packed on Ice: Yes Yes No	Holding Time	, <i>TI</i>	/22	50		Field Filtered (if applicable):		Same Day		Dispose as appropriate [] Return Archive:
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 R Billing Information: Billing Information: Chainer Preservative Type CLIENT: S2-HDR NLY S CALCA S + Email To: c C A: Container Preservative Type Iab Project Manager: NLY or A CCA - Site Collection Info/Address: Site Collected: "Preservative Type." Iab Project Manager: ame/Number: Site Collection Info/Address: Site: County/City: Time Zone Collected: "Preservative Type." Iab Project Manager: A B: Site/Facility ID #: Compliance Monitoring? (1) PIT [] MT [] CT []/ET Mayses Iab Profile/Line: Site/Facility ID #: DW Location Code: DW PVS ID #: DW Vocation Code: Custody Seals Present/ Inta Collect Signatures Present Purchase Order #: DW Location Code: DW Location Code: DW Location Code: Sufficient Volume	ed on Ice Acceptable		8	4,F		Yes [] No			Dich.	mple Disposal:
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 N Billing Information: Billing Information: Current info Current info Current info Current info Current info Current info NLY S Chucch S+ Email To: State: Container Preservative Type** Lab Project Manager: NLY ame/Number: State: County/City: Time Zone Collected: *** ************************************		1		-		DW Location Code:			Quote #:	llected By (signature):
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 S+ Billing Information: Email To: Container Preservative Type *** LIENT: 92-HDR NLY S+ Email To: Ste Collection Info/Address: MAL : AC : Corra Container Preservative Type *** Lab Project Manager: Site Collection Info/Address: Site Collection Info/Address: Time Zone Collected: *** Preservative Types: (1) Intric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acid (1) ammonium hydroxide, (0) TSP, (U) Unpreserved, (0) Other Site/Facility ID #: State: Compliance Monitoring? Compliance Monitoring? Lab SampLe Receipt Checkii	or Signature Present					1 -		Order #:	Purchase	illected By (print):
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 S+ Billing Information: Information: C.LIENT: 92-HDR NLY S+ Email To: State: State: County/City: Time Zone Collected: ** Preservative Types: (1) ntric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc ace (1) ammonium hydroxide, (0) TSP, (U) Unpreserved, (0) Other Lhaven NC MC Monocut Immonium hydroxide, (1) TSP, (2) Immonium sulfate, (3) hydrochloric acid, (4) sodium sulfate, (3) hydrochloric acid, (4) sodium sulfate, (3) hydroxide, (5) zinc ace	Custody Seals Present/Intact Y N NA					Compliance Monitoring?		lity ID #:	Site/Faci	nail:
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 S+ Billing Information: Container Preservative Type** LLENT: 92-HDR NLY S+ Email To: Container Preservative Type** Lab Project Manager: Site Collection Info/Address: Site Collection Info/Address: ** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc ace State: County/City: Time Zone Collected: (1) ammonium hydroxide, (0) TSP, (U) Unpreserved, (0) Other	Lab Sample Receipt Checklist:					_	NC / Mone		CK MAUE	
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 S+ Billing Information: Container Preservative Type ** CLIENT: 92-HDR NLY S+ Email To: Container Preservative Type ** Lab Project Manager: NLY S+ Ste Collection Info/Address: Site Collection Info/Address: ** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc ace Site Collection Info/Address: (2) ammonium hydroxide, (0) TSP, (U) Unpreserved, (0) Other Sodium thiosulfate, (9) have, (A) ascorbic acid, (8) ammonium sulfat	Lab Profile/Line:	lyses	An			Н	•	8	per:	Charcab R
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 A S+ Billing Information: Client : 92-HDR NLY NLY A S+ Email To: Container Preservative Type ** Lab Project Manager:	chloric acid, (4) sodium hydroxide, (5) zinc acetate, exane, (A) ascorbic acid, (B) ammonium sulfate,	: acid, (2) sulfuric acid, (3) hydroc ite, (8) sodium thiosulfate, (9) hc SP, (U) Unpreserved, (0) Other	7) sodium bisulf. hydroxide, (D) T	6) methanol, (C) ammonium		12	Site Collection Info//			ipy To:
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 Billing Information: Curtainer Preservative Type ** NLY NLY	Lab Project Manager:				1	3			Rind	
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Due Date: 02/01/19 Billing Information: CLIENT: 92-HDR	NLY	ervative Type **	Container Pre				1			1000-100
Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields PM: KLH1 Dis Date: 00 100			CLIE				Billing Information:			HOK
			PM:			VT - Complete all relevent fie	ly is a LEGAL DOCUMEN	Chain-of-Custoc		T aLE Allalylical

Appendix E – Statistical Analysis Memo

FJS

Summary of Statistical Analysis and Evaluation for SSIs

Background and Downgradient Wells

Charah, LLC

Moncure, Chatham County, North Carolina June 7, 2019

Contents

1	Intr	oduct	tion	1
2	Sta	tistica	al Analysis	3
2	2.1	Out	liers	6
	2.1	.1	Background	6
	2.1	.2	Downgradient	9
2	2.2	Data	a Distribution	9
2	2.3	Trer	nds1	1
	2.3	.1	Background1	1
	2.3	.2	Downgradient1	2
2	2.4	Spa	tial Variability1	3
3	Sur	nmar	y of Statistical Analysis1	4
4	Eva	aluatio	on for SSIs over Background1	7
5	Арр	bendi	x E.A: Downgradient Well Descriptive Statistics2	22
6	Арр	bendi	x E.B: Scatter Plots for Constituents with Downgradient Statistical Outliers	38
7	Ref	eren	ces	52

Tables

Table 16: Summary of Well MW-2 Data Set Descriptive Statistics	24
Table 17: Summary of Well MW-3 Data Set Descriptive Statistics	26
Table 18: Summary of Well MW-4 Data Set Descriptive Statistics	28
Table 19: Summary of Well MW-5 Data Set Descriptive Statistics	30
Table 20: Summary of Well MW-7R Data Set Descriptive Statistics	34
Table 21: Summary of Well MW-8 Data Set Descriptive Statistics	36

Figures

Figure 1: Barium Concentrations (ug/L) vs. Time	7
Figure 2: Calcium Concentrations (ug/L) vs. Time	7
Figure 3: Sulfate Concentrations (mg/L) vs. Time	8
Figure 4: Total Dissolved Solids Concentrations (mg/L) vs. Time	8
Figure 5: pH (Field) Concentrations (SU) vs. Time (MW-1)	.38
Figure 6: Total Dissolved Solids (mg/L) vs. Time (MW-2)	.39
Figure 7: Lithium Concentrations (ug/L) vs. Time (MW-3)	.40
Figure 8: Copper Concentrations (ug/L) vs. Time (MW-3)	
Figure 9: Boron Concentrations (ug/L) vs. Time (MW-4)	.42
Figure 10: Radium-226 Concentrations (pCi/L) vs. Time (MW-5)	.43
Figure 11: Boron Concentrations (ug/L) vs. Time (MW-5)	.44
Figure 12: Total Dissolved Solids Concentrations (mg/L) vs. Time (MW-5)	.45
Figure 13: Chloride Concentrations (mg/L) vs. Time (MW-6)	.46
Figure 14: Total Dissolved Solids (mg/L) vs. Time (MW-6)	.47
Figure 15: Fluoride Concentrations (mg/L) vs. Time (MW-7R)	.48
Figure 16: pH (Field) Concentrations (SU) vs. Time (MW-7R)	.49
Figure 17: Sulfate Concentrations (mg/L) vs. Time (MW-7R)	.50
Figure 18: Nickel Concentrations (ug/L) vs. Time (MW-8)	.50

1 Introduction

This report summarizes the statistical analysis of background and downgradient groundwater quality for the Charah, LLC Brickhaven No. Mine Tract 'A' Site (Brickhaven Mine) and operating under the Facility Permit #1910-STRUC-2015 as a municipal solid waste land fill (MSWLF). Background groundwater quality was evaluated such that statistically-derived background concentrations could be established for the site. Groundwater quality in downgradient wells was then compared to background concentrations to determine if a statistically significant increase (SSI) over background has occurred, as required by Section .1600 rules of the North Carolina Solid Waste Management Rules 15A NCAC 13B .1600. Sampling results used to establish background threshold values (BTVs) were obtained during sixteen monitoring events performed between October 2015 and January 2019. Downgradient sampling results from the detection monitoring round in January 2019 were used to evaluate for SSIs. The current Brickhaven Mine groundwater monitoring network is presented in **Table 1**.

Software packages ProUCL [1], NCSS [2], R [3], and SPSS [4] were used in the production of the statistics. ProUCL is offered by the USEPA, R is a free software environment, NCSS and SPSS are licensed software packages.

Background	Downgradient
BG-1	MW-1
BG-2	MW-2
	MW-3
	MW-4
	MW-5
	MW-6
	MW-7R
	MW-8

Table 1: Brickhaven Mine Monitoring Well Network

Groundwater samples collected as part of the 15A NCAC 13B .1600 monitoring program were analyzed for EPA Appendix III and Appendix IV constituents, Appendix I metals, and Appendix I volatile organic compounds (VOCs). Only non-filtered sample results were utilized for the statistical analysis of monitored constituents. A summary of constituents included in the data analysis is provided in **Table 2**.

FS

Appendix I VOCs	Appendix I Metals	Appendix III Constituents	Appendix IV Constituents
1,4-Dichlorobenzene	Copper	Boron	Antimony
Acetone	Nickel	Calcium	Arsenic
Bromodichloromethane	Silver	Chloride	Barium
Bromoform	Vanadium	Fluoride	Beryllium
Carbon disulfide	Zinc	pH (Field)	Cadmium
Chloroform		Sulfate	Chromium
Dibromochloromethane		Total Dissolved Solids	Cobalt
Dibromomethane			Fluoride
			Lead
			Lithium
			Mercury
			Molybdenum
			Radium-226
			Radium-228
			Selenium
			Thallium
			Total Radium

2 Statistical Analysis

The background sample size (i.e., quantity of qualifying samples) was evaluated per constituent. Descriptive statistics were calculated for the background data set including non-detect (ND) values and excluding ND values. When NDs were included in the data set, the method detection limit (MDL) was substituted as the ND value for simple descriptive statistics. The analysis was performed with NDs removed to better understand the central tendency and range of the detected values. A summary of the descriptive statistics for the background data set is provided in **Table 3**. Note that for the trend analyses in Section 2.3 and for the establishment of statistically-derived background concentration levels in Section 4, imputation methods using the maximum likelihood method (MLE) for NDs, regression on order statistics (ROS) or Kaplan-Meier (KM) methods, where appropriate, were used.

Following the calculation of descriptive statistics the statistical analysis for the background data set was performed to evaluate for outliers, data distributions, and trends for Appendix I metals, Appendix I VOCs, and Appendix III and IV constituents, where data quantity and quality permit. Spatial variability between the background wells was evaluated for each consistent to assess whether the data can be pooled for establishing background concentrations. A total of seventeen samples (sixteen monitoring events from well BG-1 and one monitoring event from well BG-2) were included for the descriptive analysis of the background monitoring well results for the monitored constituents. The first monitoring round sampled in August 2015 was not included in the analysis as it was deemed not representative of the other monitoring events as the samples were tested at a different lab.

For downgradient monitoring results, the data analysis included the calculation of descriptive statistics for Appendix I metals, Appendix I VOCs, and Appendix III and IV constituents (for the data sets including and excluding ND values), followed by an evaluation of outliers and trends. A total of fifteen monitoring events performed between November 2015 and January 2018 were included for the descriptive analysis of the downgradient monitoring well results for the monitored constituents. A summary of the descriptive statistics for each downgradient well is provided in **Appendix E.A**.

		Sample	No.	v	/ith NDs=MD	Ls Included	k		With NDs Re	emoved	
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
	•			A	ppendix I V	OCs					
1,4-Dichlorobenzene	ug/L	17	17	0.260	0.330	0.322	0.330				
Acetone	ug/L	17	17	6.20	10.0	9.55	10.0				
Bromodichloromethane	ug/L	17	17	0.180	0.260	0.189	0.180				
Bromoform	ug/L	17	17	0.260	0.620	0.302	0.260				
Carbon disulfide	ug/L	17	17	0.400	1.20	1.11	1.20				
Chloroform	ug/L	17	17	0.140	2.30	0.394	0.140				
Dibromochloromethane	ug/L	17	17	0.210	0.410	0.234	0.210				
Dibromomethane	ug/L	17	17	0.210	0.460	0.239	0.210				
				A	ppendix I M	etals					
Copper	ug/L	17	17	2.50	2.50	2.50	2.50				
Nickel	ug/L	17	17	2.50	2.50	2.50	2.50				
Silver	ug/L	17	17	2.50	2.50	2.50	2.50				
Vanadium	ug/L	17	12	2.50	5.50	3.30	2.50	5.10	5.50	5.22	5.10
Zinc	ug/L	17	16	5.00	10.0	5.29	5.00	10.0	10.0	10.0	10.0
				Арре	ndix III Cons	stituents					
Boron	ug/L	17	8	0.570	7.50	4.06	5.50	5.50	7.50	6.46	6.10
Calcium	ug/L	17	0	23,900	89,600	32,912	29,000	23,900	89,600	32,912	29,000
Chloride	mg/L	17	0	213	311	269	277	213	311	269	277
Fluoride	mg/L	17	0	0.100	0.170	0.131	0.130	0.100	0.170	0.131	0.130
pH (Field)	S.U.	13	0	6.24	6.80	6.55	6.52	6.24	6.80	6.55	6.52
Sulfate	mg/L	17	0	15.1	64.7	21.4	18.6	15.1	64.7	21.4	18.6
Total Dissolved Solids	mg/L	17	0	546	2,630	762	643	546	2,630	762	643
				Appe	ndix IV Con	stituents					
Antimony	ug/L	17	17	3.80	3.90	3.86	3.90				

Table 3: Summary of Background Data Set Descriptive Statistics (BG-1 and BG-2)

	titucet Sample No. With NDs=MDLs Included					With NDs Re	emoved				
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Arsenic	ug/L	17	17	2.50	5.00	3.97	5.00				
Barium	ug/L	17	0	123	443	324	329	123	443	324	329
Beryllium	ug/L	17	17	0.500	0.500	0.500	0.500				
Cadmium	ug/L	17	17	0.500	0.500	0.500	0.500				
Chromium	ug/L	17	17	2.50	2.50	2.50	2.50				
Cobalt	ug/L	17	17	2.50	2.50	2.50	2.50				
Fluoride	mg/L	17	0	0.100	0.170	0.131	0.130	0.100	0.170	0.131	0.130
Lead	ug/L	17	17	2.50	2.50	2.50	2.50				
Lithium	ug/L	17	0	12.1	36.8	20.2	17.9	12.1	36.8	20.2	17.9
Mercury	ug/L	17	17	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	17	16	2.50	6.80	2.75	2.50	6.80	6.80	6.80	6.80
Radium-226	pCi/L	16	0	-0.206	0.800	0.355	0.360				
Radium-228	pCi/L	16	0	0.0108	1.29	0.633	0.645				
Selenium	ug/L	17	17	5.00	5.00	5.00	5.00				
Thallium	ug/L	17	16	0.0200	13.7	2.59	0.0600	13.7	13.7	13.7	13.7
Total Radium	pCi/L	16	0	0.271	2.09	1.00	0.957				

Notes:

1. ND = not detected above the laboratory method detection limit.

MDL = method detection limit. 2.

"--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL. 3.

4.

Numbers are displayed using the same number of significant figures as reported by the laboratory. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs. 5.

2.1 Outliers

Outliers are values that are not representative of the population from which they are sampled. The background and downgradient data sets were screened for outliers using Dixon's outlier test, which is suitable for data sets containing less than 25 samples. The outlier test was conducted using a significance of one percent. For constituents that had NDs, the NDs were removed prior to testing for outliers.

2.1.1 Background

Statistical outliers were identified in the background data set evaluated for three Appendix III constituents (calcium, sulfate, and total dissolved solids) and one Appendix IV constituent (barium). The constituent concentrations identified as statistical outliers were sampled from the newly installed background well BG-2, except for total dissolved solids, and are listed in **Table 4**.

Well	Constituent	Constituent Type	Potential Outlier Value	Units	Sampling Event	Sample Date
BG-1	Total Dissolved Solids	Appendix III	2,630	mg/L	R10	4/3/2017
BG-1	Total Dissolved Solids	Appendix III	546	mg/L	R17	1/22/2019
	Calcium	Appendix III	89,600	ug/L	R17	1/22/2019
BG-2	Sulfate	Appendix III	64.7	mg/L	R17	1/22/2019
	Barium	Appendix IV	123	ug/L	R17	1/22/2019

Table 4: Dixon's Outlier Test Results – Background

A visual inspection of concentration vs. time scatter plots for barium (**Figure 1**), calcium (**Figure 2**), sulfate (**Figure 3**), and total dissolved solids (**Figure 4**) reveal the presence of the potential outliers. The statistical outliers were investigated as possible data entry or measurement errors. The values were all within one order of magnitude of other observations and deemed correct. Although the elevated values appears as a statistical outliers, it is within a reasonable range of the remaining concentrations throughout the monitoring period and should not be removed from the data set at this time for purposes of determining background concentrations. Given the variable nature of groundwater samples, the small sample sizes and that it is common for groundwater quality samples to have very low or very high concentrations over time, statistical outliers are expected but do not necessarily signify that the outliers are from different distributions. As additional background samples are collected over time, the variability in concentrations will be better understood. Outlier test results may change and earlier observations thought to be outliers may no longer be outliers.

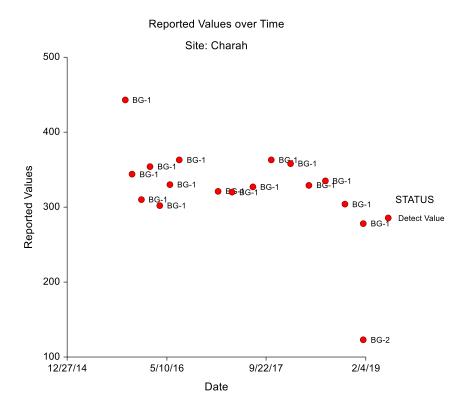
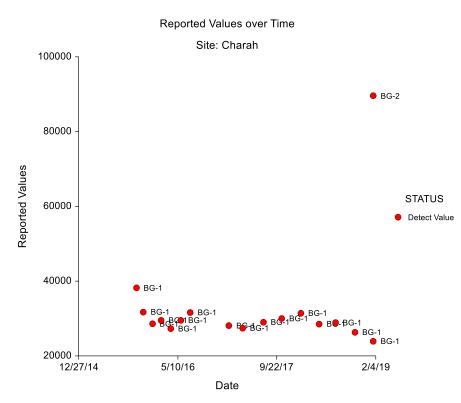
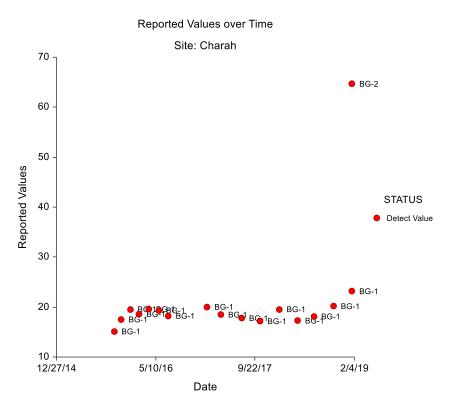




Figure 1: Barium Concentrations (ug/L) vs. Time

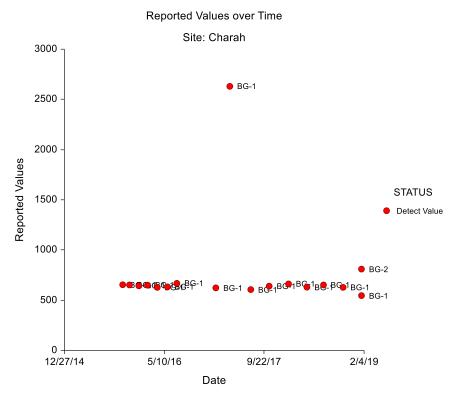


Figure 3: Sulfate Concentrations (mg/L) vs. Time

2.1.2 Downgradient

Statistical outliers were identified for Appendix I metals, Appendix III and Appendix IV constituents in the data sets evaluated for downgradient monitoring wells throughout the monitoring period, and are listed in **Table 5**.

Well	Constituent	Constituent Type	Potential Outlier Value	Units	Sampling Event	Sample Date
MW-1	pH (Field)	App. III	7.30	S.U.	R09	1/25/2017
MW-2	Total Dissolved Solids	App. III	257	mg/L	R03	11/19/2015
	Lithium	App. IV	236	ug/L	R12	10/18/2017
MW-3	Copper	App. I Metals	36.0	ug/L	R17	1/25/2019
MW-4	Boron	App. III	165	ug/L	R12	10/17/2017
	Radium-226	App. IV	0.592	pCi/L	R03	11/18/2015
MW-5	Boron	App. III	39.3	ug/L	R09	1/23/2017
	Total Dissolved Solids	App. III	1,160	mg/L	R12	10/17/2017
	Chloride	App. III	15.3	mg/L	R06	4/5/2016
MW-6	Total Dissolved Solids	App. III	371	mg/L	R12	10/17/2017
	Fluoride	App. III	0.320	mg/L	R11	7/20/2017
MW-7R	pH (Field)	App. III	9.60	S.U.	R11	7/20/2017
	Sulfate	App. III	51.2	mg/L	R11	7/20/2017
MW-8	Nickel	App. I Metals	42.1	ug/L	R09	1/24/2017

Table 5: Dixon's Outlier Test Results – Downgradient

A visual inspection of concentration vs. time scatter plots for constituents included in the outliers listed in **Table 5** reveal the presence of the potential outliers.¹ Following review of the sampling protocols and field sampling records, there were no obvious reasons for the outliers noted on the sampling dates. The value for each statistical outlier listed above is within a reasonable range of the remaining concentrations for each constituent throughout the monitoring period. The variability in concentrations will be better understood as additional samples are obtained.

2.2 Data Distribution

Groundwater data was fitted to known distribution models using Goodness-of-Fit (GOF) tests incorporated into ProUCL. For data sets comprised of 50 or fewer samples, ProUCL's GOF module incorporates the Shapiro-Wilk GOF test to determine normal or lognormal distribution and Anderson-Darling to determine gamma distribution. Normal, lognormal and gamma distributions are parametric distributions. If a data set could not be fit with any of these three parametric distributions, it was considered to follow a nonparametric distribution. Note that ProUCL does not provide GOF results for data sets with less than three detected values due to insufficient data. For purposes of estimating background concentrations, these data sets were treated under non-parametric distribution assumptions with the maximum detected value

¹ See Appendix E.B for scatter plots of constituents with downgradient statistically-derived outliers.

chosen to represent the background concentrations. In addition, the data for total radium is set to nonparametric as the MDL values were not provided by the laboratory. Data distributions are listed in **Table 6**.

Table 6: Data Distributions – Background

Constituent	Sample Size	No. of NDs	Distribution Fit ¹
	Appendix I V	OCs	
1,4-Dichlorobenzene	17	17	Nonparametric
Acetone	17	17	Nonparametric
Bromodichloromethane	17	17	Nonparametric
Bromoform	17	17	Nonparametric
Carbon disulfide	17	17	Nonparametric
Chloroform	17	17	Nonparametric
Dibromochloromethane	17	17	Nonparametric
Dibromomethane	17	17	Nonparametric
	Appendix I Me	etals	
Copper	17	17	Nonparametric
Nickel	17	17	Nonparametric
Silver	17	17	Nonparametric
Vanadium	17	12	Nonparametric
Zinc	17	16	Nonparametric
Арр	endix III Cons	stituents	
Boron	17	8	Parametric
Calcium	17	0	Nonparametric
Chloride	17	0	Parametric
Fluoride	17	0	Parametric
pH (Field)	13	0	Parametric
Sulfate	17	0	Nonparametric
Total Dissolved Solids	17	0	Nonparametric
Арр	endix IV Con	stituents	
Antimony	17	17	Nonparametric
Arsenic	17	17	Nonparametric
Barium	17	0	Nonparametric
Beryllium	17	17	Nonparametric
Cadmium	17	17	Nonparametric
Chromium	17	17	Nonparametric
Cobalt	17	17	Nonparametric
Fluoride	17	0	Parametric
Lead	17	17	Nonparametric

Constituent	Sample Size	No. of NDs	Distribution Fit ¹
Lithium	17	0	Parametric
Mercury	17	17	Nonparametric
Molybdenum	17	16	Nonparametric
Radium-226	16	0	Nonparametric
Radium-228	16	0	Nonparametric
Selenium	17	17	Nonparametric
Thallium	17	16	Nonparametric
Total Radium	16	0	Nonparametric

¹Best fit is based on detected data.

2.3 Trends

2.3.1 Background

Background constituent concentrations in groundwater should demonstrate stationary conditions through time, free of trends. Constituents were analyzed for trends within the data set using a maximum likelihood estimate (MLE) regression for constituents which followed parametric distributions and Mann-Kendall tests for those that were treated under nonparametric distributional assumptions. The MLE regression can be applied to data sets that can be fitted to a specific distribution model and that contain NDs with multiple MDLs. The Mann-Kendall test is suitable for data series with no discernable distributions and only one MDL value for NDs.

Constituents treated under nonparametric data assumptions (either tested as nonparametric or having more than 50 percent NDs) and with multiple MDLs or with less than three detected values were not assessed for trends. A summary of the trend analysis results for constituents with sufficient detected values in the background data set is provided in **Table 7**.

The background well regression analysis showed a potential increasing trend for one Appendix III constituent (fluoride) and a potential decreasing trend for two Appendix III constituents (boron and chloride) and one Appendix IV constituent (barium).There were no increasing or decreasing trends identified for other monitoring constituents with sufficient data quantity and quality for testing with the MLE analysis or Mann-Kendall test. Although statistical trends were identified for boron, barium, chloride, and fluoride, the results can be misleading due to the short duration of the sampling program.

Table 7: Summary of Trend Analysis Results – Background

Constituent	Trend
Appendix III	Constituents
Boron	Ļ

Constituent	Trend					
Chloride	\downarrow					
Fluoride	↑					
Appendix IV	Constituents					
Barium	Ļ					
Fluoride	1					

2.3.2 Downgradient

Trends were also evaluated for constituents in each downgradient well using the same methods as described above for the background data set. Trends were identified for select constituents at select monitoring well locations, and should be monitored as additional downgradient groundwater data are collected at the site. A summary of the statistical trends identified within the downgradient data set is provided in **Table 8**.

Table 8: Summary of Trend Analysis Results – Downgradient

		Dowr	gradient W	ell with Incr	reasing or I	Decreasing	Trend				
Constituent	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7R	MW-8			
			Appendix	I Metals							
Copper		1	1								
Nickel	↑		↑								
Zinc								Ļ			
Appendix III Constituents											
Boron	↓		↓			\downarrow					
Calcium	↑			↑		\downarrow		\downarrow			
Chloride	1		\downarrow	1				\downarrow			
Fluoride			1	\downarrow							
pH (Field)				↓				↑			
Sulfate	\downarrow	\downarrow	1	1				1			
Total Dissolved Solids	1			1							
		A	opendix IV (Constituent	s						
Antimony		\downarrow	↓					\downarrow			
Barium			\downarrow			\downarrow		\downarrow			
Chromium	↑		1		↑						
Lithium	↑			↑				Ļ			
Molybdenum		↓	↓								
Radium-226				↑							
Total Radium				1							

2.4 Spatial Variability

Spatial variability refers to identifying whether or not there are statistically identifiable differences in mean concentrations or variance levels across the well field (i.e., the pooled background data). The results from background wells BG-1 and BG-2 were assessed to determine if it is appropriate to pool the data and use it to calculate background concentrations. The sampling round from well BG-2 was compared to the BTVs established in 2018 with the BG-1 well concentrations. The majority of the concentrations in BG-2 were below the former BTVs, therefore no evidence of spatial variability was identified. The constituents in BG-2 will be monitored as additional background groundwater data are collected at the site.

3 Summary of Statistical Analysis

A summary of the statistical analysis results is provided in **Table 9** and discussed below.

- The statistical outliers identified for barium, calcium, sulfate, and total dissolved solids should not be removed from the data set to be used for developing background concentrations for the site at this time.
- For the background data set, all of the five Appendix I metals exhibited high percentages of NDs and will be treated under nonparametric distribution assumptions with the maximum detected value chosen to represent background, until additional results can be included in the data sets.
- For the background data set, there are currently sufficient data to fit the Appendix III constituents to known parametric distribution models (e.g., gamma, lognormal, or normal) using GOF tests, except for calcium, sulfate, and total dissolved solids, which are nonparametric. Statistical tests conducted under parametric distribution assumptions have more power to detect a SSI when compared to tests conducted under nonparametric distribution assumptions.
- For the background data set, eleven of the seventeen Appendix IV constituents exhibited high percentages of NDs and will be treated under nonparametric distribution assumptions with the maximum detected value chosen to represent background, until additional results can be included in the data sets. The data for radium-226, radium-228 and total radium is set to a nonparametric distribution as the MDL values were not provided by the laboratory. Currently, the background data sets for fluoride and lithium can be fitted to known parametric distribution models using GOF tests.
- Based on the small data set and short duration of the monitoring program, results from the outlier and trend analyses should be considered preliminary until additional sample results are included in the data set and re-evaluated.
- At this time, for the purpose of calculating background concentrations and testing for SSIs over background for Appendix I metals, and Appendix III and IV constituents, results from seventeen samples (sixteen monitoring events taken during October 2015 to January 2019 from BG-1 and one monitoring event taken January 2019 from BG-2) were used. The statistically-derived background concentrations and the evaluation for SSIs over background for Appendix I metals, Appendix III and Appendix IV constituents are included in **Section 4**.

Table 9: Summary of Background Preliminary Data Analysis

Constituent	Statistical Outlier	Nonparametric Data Distribution	Trend
	Appendix I V	OCs	
1,4-Dichlorobenzene		✓	
Acetone		✓	
Bromodichloromethane		✓	
Bromoform		✓	
Carbon disulfide		✓	
Chloroform		✓	
Dibromochloromethane		✓	
Dibromomethane		✓	
ļ	Appendix I M	etals	
Copper		✓	
Nickel		✓	
Silver		✓	
Vanadium		✓	
Zinc		✓	
Арре	endix III Cons	stituents	
Boron			✓
Calcium	✓	\checkmark	
Chloride			✓
Fluoride			✓
Sulfate	✓	✓	
Total Dissolved Solids	✓	✓	
Арре	endix IV Cons	stituents	
Antimony		\checkmark	
Arsenic		\checkmark	
Barium	✓	✓	✓
Beryllium		✓	
Cadmium		\checkmark	
Chromium		✓	
Cobalt		✓	
Fluoride			✓
Lead		✓	
Mercury		✓	
Molybdenum		✓	
Radium-226		✓	
Radium-228		\checkmark	

Constituent	Statistical Outlier	Nonparametric Data Distribution	Trend
Selenium		✓	
Thallium		✓	
Total Radium		✓	

 \checkmark Constituent was flagged during the statistical analysis

4 Evaluation for SSIs over Background

Based on the statistical evaluations performed, background threshold values (BTVs) were determined for the detection monitoring program at the site for Appendix I metals, and Appendix III and IV constituents. Note that BTVs were not calculated for Appendix I VOCs as all of these constituents were 100 percent non-detects. For constituents that have all ND background values, the maximum MDL is chosen to represent background and the double quantification rule (DQR) is used to evaluate whether or not there is an SSI. The BTV provided for detection monitoring constituents is the statistically-derived background concentration (i.e., upper prediction limit [UPL]), the maximum detected value or the maximum MDL depending on the level of censorship in each of the background samples. For pH (field), both the UPL and the lower prediction limit (LPL) were computed as pH values above or below the prediction limits at the downgradient wells can be considered statistically significant. The test significance level per constituent has been estimated such that the cumulative false positive rate over all constituent/well pair comparisons is approximately ten percent. The number of verification samples per constituent has been selected to provide sufficient statistical power to detect an SSI when an SSI as occurred conditional to the background sample size, its distributional properties, and the total number of statistical test comparisons. The calculated background concentrations, or BTVs, for each detection monitoring constituent is provided below in Table 10.

Constituent	Unit	No. of Verification	BTV							
		Samples.	(UPL)							
Appendix I VOCs										
1,4-Dichlorobenzene	ug/L	na	0.330							
Acetone	ug/L	na	10.0							
Bromodichloromethane	ug/L	na	0.260							
Bromoform	ug/L	na	0.620							
Carbon disulfide	ug/L	na	1.20							
Chloroform	ug/L	na	2.30							
Dibromochloromethane	ug/L	na	0.410							
Dibromomethane	ug/L	na	0.460							
	Appendix I	Metals								
Copper	ug/L	na	2.50							
Nickel	ug/L	na	2.50							
Silver	ug/L	na	2.50							
Vanadium	ug/L	3	5.50							
Zinc	ug/L	3	10.0							
Ар	pendix III Co	onstituents								

Table 10: Background Concentrations for Detection Monitoring Constituents

Constituent	Unit	No. of Verification Samples.	BTV (UPL)
Boron	ug/L	1	9.26
Calcium	ug/L	3	89,600
Chloride	mg/L	1	355
Fluoride	mg/L	1	0.189
pH (Field)	S.U.	1	6.05 - 7.07*
Sulfate	mg/L	3	64.7
Total Dissolved Solids	mg/L	3	2,630
Ар	pendix IV Co	onstituents	
Antimony	ug/L	na	3.90
Arsenic	ug/L	na	5.00
Barium	ug/L	3	443
Beryllium	ug/L	na	0.500
Cadmium	ug/L	na	0.500
Chromium	ug/L	na	2.50
Cobalt	ug/L	na	2.50
Fluoride	mg/L	1	0.189
Lead	ug/L	na	2.50
Lithium	ug/L	1	42.7
Mercury	ug/L	na	0.100
Molybdenum	ug/L	3	6.80
Radium-226	pCi/L	3	0.800
Radium-228	pCi/L	3	1.29
Selenium	ug/L	na	5.00
Thallium	ug/L	3	13.7
Total Radium	pCi/L	3	2.09

Note:

* indicates the lower bound of the pH range is the lower prediction limit (LPL). The upper bound is the UPL. The BTVs were obtained during thirteen monitoring events performed between October 2015 and July 2018 at well BG-1.

Italic concentration indicates a non-detect value and that the DQR is recommended for statistical evaluation.

Downgradient sampling results from the first detection monitoring round in January 2019 were used to test for SSIs. For constituents that have all ND background values, the DQR is applied; that is, an SSI is registered for the well-constituent pair if the downgradient concentrations exhibit detects in two consecutive sampling events. Downgradient concentrations were compared to the BTVs and are summarized below in **Table 11** through **Table 14**. Eight monitoring wells (MW-1 through MW-8) were installed and sampled (October 2015) prior to ash placement, thus representing pre-ash conditions at the site. The range of the concentrations of the pre-ash conditions are included in the tables below as a relative comparison to the current downgradient conditions.

Table 11: Summary of Evaluation for SSIs over Background for Appendix I Metals (Detection Monitoring)

		Appendix	<pre>c I Metals</pre>						
	Copper	Nickel	Silver	Vanadium	Zinc				
Unit	ug/L	ug/L	ug/L	ug/L	ug/L				
BTV (UPL)	2.5	2.5	2.50	5.50	10				
Pre-Ash Range	2.50 - 16.4	2.50 - 18.2	2.50 - 2.50	2.50 - 9.90	5.00 - 106				
Well		First Detection Monitoring Round Results							
MW-1	2.50	2.50	2.50	2.50	<u>14.7</u>				
MW-2	<u>17.2</u>	<u>17.2</u> <u>9.70</u>		<u>7.60</u>	<u>31.1</u>				
MW-3	<u>36.0</u>	<u>86.0</u>	2.50	<u>13.9</u>	<u>42.7</u>				
MW-4	2.50	2.50	2.50	2.50	<u>29.4</u>				
MW-5	2.50	2.50	2.50	2.50	5.00				
MW-6	2.50	2.50	2.50	2.50	<u>17.7</u>				
MW-7	2.50	2.50	2.50	2.50	<u>10.7</u>				
MW-8	2.50	2.50	2.50	2.50	<u>13.6</u>				

Notes:

Underlined concentration indicates a detect value in the first DM round result for constituents with 100% background non-detects. Bold and underlined concentration indicates an SSI over background.

Table 12: Summary of Evaluation for SSIs over Background for Appendix I VOCs (Detection Monitoring)

			Арре	ndix I VOCs				
	1,4- Dichloro- benzene	Acetone	Bromo- dichloro- methane	Bromo- form	Carbon disulfide	Chlorof orm	Dibro- mochlor o- methane	Dibro mo- metha ne
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
BTV (UPL)	0.330	10.0	0.260	0.620	1.20	2.30	0.410	0.460
Pre-Ash Range	0.330 - 0.330	10.0 - 10.0	0.180 - 0.180	0.260 - 0.260	1.20 - 1.20	0.140 - 1.80	0.210 - 0.210	0.210 - 0.210
Well			First Detect	tion Monitorin	g Round Resi	ılts		
MW-1	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-2	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-3	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-4	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-5	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-6	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-7	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-8	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460

Notes:

Underlined concentration indicates a detect value in the first DM round result for constituents with 100% background non-detects.

Bold and underlined concentration indicates an SSI over background.

Table 13: Summary of Evaluation for SSIs over Background for Appendix III Constituents (Detection Monitoring)

			Appendix III C	onstituents	5		
	Boron	Calcium	Chloride	Fluoride	pH (Field)	Sulfate	TDS
Unit	ug/L	ug/L	mg/L	mg/L	S.U.	mg/L	mg/L
BTV (UPL)	9.3	89,600	355	0.189	6.05 - 7.07*	65	2,630
Pre- Ash Range	6.20 - 53.1	16,900 - 185,000	22.2 - 1,160 0.0200 - 0.590 6.17 - 7.70 3.70 - 199		296 - 2,770		
Well			First Detection M	lonitoring Ro	ound Results		
MW-1	2.60	<u>205,000</u>	<u>756</u>	0.160	6.41	8.00	1,510
MW-2	<u>39.1</u>	<u>207,000</u>	<u>1,200</u>	<u>0.260</u>	<u>7.53</u>	<u>130</u>	2,590
MW-3	2.60	<u>194,000</u>	<u>1,120</u>	<u>0.420</u>	<u>7.13</u>	<u>80.2</u>	2,360
MW-4	2.60	64,300	<u>485</u>	<u>0.290</u>	6.10	12.2	1,170
MW-5	2.60	13,700	22.2	<u>0.570</u>	<u>7.26</u>	2.90	261
MW-6	2.60	34,400	229	<u>0.400</u>	6.23	48.7	649
MW-7	2.60	89,100	289	0.110	<u>7.27</u>	18.3	820
MW-8	2.60	<u>110,000</u>	<u>377</u>	0.0500	6.94	7.90	814

Notes:

Underlined concentration indicates a detect value in the first DM round result for constituents with 100% background non-detects.

Bold and underlined concentration indicates an SSI over background.

 * indicates the lower bound of the pH range is the LPL. The upper bound is the UPL.

Table 14: Summary of Evaluation for SSIs over Background for Appendix IV Constituents (Detection Monitoring)

		Appendix IV Constituents										
	Antimon y	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Fluoride	Lead			
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L			
BTV (UPL)	3.9	5.00	443	0.500	0.500	2.5	2.50	0.189	2.50			
Pre- Ash Range	3.80 - 12.0	2.50 - 2.50	117 - 1,240	0.500 - 0.500	0.500 - 0.500	2.50 - 33.9	2.50 - 7.00	0.0200 - 0.590	2.50 - 6.30			
Well			1	First Detectior	n Monitoring F	Round Results						
MW-1	3.90	5.00	242	0.500	0.500	2.50	2.50	0.160	2.50			
MW-2	3.90	5.00	360	0.500	0.500	<u>14.0</u>	2.50	<u>0.260</u>	2.50			
MW-3	3.90	5.00	<u>715</u>	0.500	0.500	<u>179</u>	<u>6.20</u>	<u>0.420</u>	<u>7.30</u>			
MW-4	3.90	5.00	268	0.500	0.500	2.50	2.50	<u>0.290</u>	2.50			
MW-5	3.90	5.00	123	0.500	0.500	2.50	2.50	<u>0.570</u>	2.50			
MW-6	3.90	5.00	89.7	0.500	0.500	<u>5.30</u>	2.50	<u>0.400</u>	2.50			
MW-7	3.90	5.00	255	0.500	0.500	<u>6.50</u>	2.50	0.110	2.50			

	Appendix IV Constituents										
MW-8	3.90	5.00	<u>1,170</u>	0.500	0.500	2.50	2.50	0.0500	2.5		
	Lithium	Mercur y	Molybd enum	Radium- 226	Radium- 228	Selenium	Thallium	Total Radium			
Unit	ug/L	ug/L	ug/L	pCi/L	pCi/L	ug/L	ug/L	pCi/L			
BTV (UPL)	62.0	0.100	20.6	0.820	1.56	5.00	13.7	2.93			
Pre- Ash Range	7.50 - 70.4	0.100 - 0.100	2.50 - 20.6	0.0774 - 0.820	0.0230 - 1.56	5.00 - 5.00	5.00 - 5.00	0.304 - 2.93			
Well			First	Detection Mo	nitoring Roun	d Results					
MW-1	30.9	0.100	2.50	0.607	0.737	5.00	0.0600	1.34			
MW-2	<u>94.1</u>	0.100	<u>7.90</u>	<u>1.21</u>	<u>1.49</u>	5.00	0.0600	<u>2.70</u>			
MW-3	<u>72.6</u>	0.100	<u>12.0</u>	<u>1.92</u>	<u>2.00</u>	5.00	0.0600	<u>3.92</u>			
MW-4	25.4	0.100	2.50	<u>0.913</u>	<u>1.35</u>	5.00	0.0600	<u>2.26</u>			
MW-5	8.00	0.100	2.50	0.108	0.695	5.00	0.0600	0.803			
MW-6	27.9	0.100	2.50	0.00	0.628	5.00	0.0600	0.628			
MW-7	25.4	0.100	2.50	<u>0.987</u>	1.01	5.00	0.120	2.00			
MW-8	21.7	0.100	2.50	0.743	1.20	5.00	0.0600	1.94			

Notes:

Underlined concentration indicates a detect value in the first DM round result for constituents with 100% background non-detects. Bold and underlined concentration indicates an SSI over background.

SSIs were found for six Appendix III constituents (boron, calcium, chloride, fluoride, pH (field), and sulfate), seven Appendix IV constituents (barium, fluoride, lithium, molybdenum, radium-226, radium-228, and total radium), and two Appendix I metals (vanadium and zinc). Three Appendix IV constituents (chromium, cobalt, and lithium) and two Appendix I metals (copper and nickel) were flagged as potential SSIs as they are non-detected constituents that had detected values. If the downgradient concentrations for these constituents exhibit detects in the consecutive sampling event, then an SSI would be registered. When results of the January 2019 sampling event are compared to the pre-ash sampling results from those eight wells, current downgradient groundwater constituent. Of the fourteen constituents with observed SSIs, eight of them are within the range of pre-ash conditions. Depending on the data distribution of the constituent, the BTVs have been computed to allow for one to three verification samples. With verification sampling, the validity of the SSIs can be confirmed.

5 Appendix E.A: Downgradient Well Descriptive Statistics

Table 15: Summary of Well MW-1 Data Set Descriptive Statistics

		Sample	No.		With NDs=MD	_s Included			With NDs R	emoved	
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
					Appendix I V	OCs					
1,4-Dichlorobenzene	ug/L	15	15	0.260	0.330	0.325	0.330				
Acetone	ug/L	15	15	6.20	10.0	9.75	10.0				
Bromodichloromethane	ug/L	15	15	0.180	0.260	0.185	0.180				
Bromoform	ug/L	15	15	0.260	0.620	0.284	0.260				
Carbon disulfide	ug/L	15	15	0.400	1.20	1.15	1.20				
Chloroform	ug/L	15	15	0.140	2.30	0.284	0.140				
Dibromochloromethane	ug/L	15	15	0.210	0.410	0.223	0.210				
Dibromomethane	ug/L	15	15	0.210	0.460	0.227	0.210				
					Appendix I M	etals					
Copper	ug/L	15	15	2.50	2.50	2.50	2.50				
Nickel	ug/L	15	12	2.50	13.3	3.79	2.50	5.60	13.3	8.93	7.90
Silver	ug/L	15	15	2.50	2.50	2.50	2.50				
Vanadium	ug/L	15	12	2.50	6.20	3.12	2.50	5.00	6.20	5.60	5.60
Zinc	ug/L	15	9	5.00	28.0	9.37	5.00	10.2	28.0	15.9	14.0
				Ар	pendix III Con	stituents					
Boron	ug/L	15	7	0.570	14.5	5.69	6.20	6.20	14.5	9.63	9.65
Calcium	ug/L	15	0	57,700	205,000	119,407	124,000	57,700	205,000	119,407	124,000
Chloride	mg/L	15	0	167	756	461	455	167	756	461	455
Fluoride	mg/L	15	1	0.0200	0.170	0.128	0.130	0.110	0.170	0.136	0.130
pH (Field)	S.U.	13	0	6.41	7.30	6.72	6.70	6.41	7.30	6.72	6.70
Sulfate	mg/L	15	0	6.20	11.2	8.39	8.00	6.20	11.2	8.39	8.00
Total Dissolved Solids	mg/L	15	0	569	1,510	1,014	1,020	569	1,510	1,014	1,020
				Ар	pendix IV Con	stituents					
Antimony	ug/L	15	14	3.80	6.10	4.01	3.90	6.10	6.10	6.10	6.10
Arsenic	ug/L	15	15	2.50	5.00	4.00	5.00				

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs

- 22

Constituent	Unit	Sample Size	No. of NDs	With NDs=MDLs Included				With NDs Removed			
				Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Barium	ug/L	15	0	70.3	242	162	155	70.3	242	162	155
Beryllium	ug/L	15	15	0.500	0.500	0.500	0.500				
Cadmium	ug/L	15	15	0.500	0.500	0.500	0.500				
Chromium	ug/L	15	11	2.50	18.4	4.68	2.50	6.60	18.4	10.7	8.85
Cobalt	ug/L	15	15	2.50	2.50	2.50	2.50				
Fluoride	mg/L	15	1	0.0200	0.170	0.128	0.130	0.110	0.170	0.136	0.130
Lead	ug/L	15	15	2.50	2.50	2.50	2.50				
Lithium	ug/L	15	0	19.2	36.1	30.2	31.2	19.2	36.1	30.2	31.2
Mercury	ug/L	15	15	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	15	15	2.50	2.50	2.50	2.50				
Radium-226	pCi/L	14	0	-0.188	1.03	0.331	0.265				
Radium-228	pCi/L	14	0	-0.0467	0.915	0.483	0.483				
Selenium	ug/L	15	15	5.00	5.00	5.00	5.00				
Thallium	ug/L	15	15	0.0200	5.00	2.02	0.0300				
Total Radium	pCi/L	14	0	0.237	1.47	0.844	0.755				

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 16: Summary of Well MW-2 Data Set Descriptive Statistics

		Sample	No.		With NDs=MD	Ls Included			With NDs R	emoved	
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
	1				Appendix I V	OCs					
1,4-Dichlorobenzene	ug/L	14	14	0.260	0.330	0.325	0.330				
Acetone	ug/L	14	14	6.20	10.0	9.73	10.0				
Bromodichloromethane	ug/L	14	14	0.180	0.260	0.186	0.180				
Bromoform	ug/L	14	14	0.260	0.620	0.286	0.260				
Carbon disulfide	ug/L	14	14	0.400	1.20	1.14	1.20				
Chloroform	ug/L	14	14	0.140	2.30	0.294	0.140				
Dibromochloromethane	ug/L	14	14	0.210	0.410	0.224	0.210				
Dibromomethane	ug/L	14	14	0.210	0.460	0.228	0.210				
					Appendix I M	etals					
Copper	ug/L	14	10	2.50	17.2	4.29	2.50	5.00	17.2	8.78	6.45
Nickel	ug/L	14	7	2.50	54.4	12.6	5.60	8.70	54.4	22.6	15.2
Silver	ug/L	14	14	2.50	2.50	2.50	2.50				
Vanadium	ug/L	14	13	2.50	7.60	2.86	2.50	7.60	7.60	7.60	7.60
Zinc	ug/L	14	7	5.00	113	23.0	7.85	10.7	113	40.9	31.1
				Ар	opendix III Con	stituents					
Boron	ug/L	14	0	37.4	63.9	45.4	43.4	37.4	63.9	45.4	43.4
Calcium	ug/L	14	0	130,000	217,000	192,000	193,500	130,000	217,000	192,000	193,500
Chloride	mg/L	14	0	910	1,360	1,167	1,190	910	1,360	1,167	1,190
Fluoride	mg/L	14	1	0.0200	0.400	0.216	0.220	0.130	0.400	0.232	0.220
pH (Field)	S.U.	12	0	7.50	8.50	7.76	7.62	7.50	8.50	7.76	7.62
Sulfate	mg/L	14	0	73.3	338	198	216	73.3	338	198	216
Total Dissolved Solids	mg/L	14	0	257	3,290	2,360	2,475	257	3,290	2,360	2,475
				Ар	pendix IV Con	stituents					
Antimony	ug/L	14	6	3.90	12.3	6.89	6.25	5.60	12.3	9.13	9.10
Arsenic	ug/L	14	14	2.50	5.00	3.93	5.00				
Barium	ug/L	14	0	177	360	254	246	177	360	254	246
Beryllium	ug/L	14	14	0.500	0.500	0.500	0.500				
Cadmium	ug/L	14	14	0.500	0.500	0.500	0.500				

	H)	2
_			

		Sample	No.		With NDs=MDI	_s Included			With NDs R	emoved	
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	14	3	2.50	84.0	21.8	10.9	5.20	84.0	27.1	15.8
Cobalt	ug/L	14	14	2.50	2.50	2.50	2.50				
Fluoride	mg/L	14	1	0.0200	0.400	0.216	0.220	0.130	0.400	0.232	0.220
Lead	ug/L	14	14	2.50	2.50	2.50	2.50				
Lithium	ug/L	14	0	53.1	356	156	132	53.1	356	156	132
Mercury	ug/L	14	14	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	14	0	7.10	21.1	11.7	9.65	7.10	21.1	11.7	9.65
Radium-226	pCi/L	13	0	0.580	1.94	0.973	0.945				
Radium-228	pCi/L	13	0	0.433	1.75	1.22	1.17				
Selenium	ug/L	14	14	5.00	5.00	5.00	5.00				
Thallium	ug/L	14	13	0.0200	10.3	2.54	0.0450	10.3	10.3	10.3	10.3
Total Radium	pCi/L	13	0	1.12	3.02	2.19	2.37				

- 1. ND = not detected above the method detection limit.
- 2. MDL = method detection limit.
- 3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.
- 4. Numbers are displayed using the same number of significant figures as reported by the laboratory.
- 5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 17: Summary of Well MW-3 Data Set Descriptive Statistics

		Sample	No.		With NDs=MD	Ls Included			With NDs R	emoved	
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
					Appendix I V	OCs					
1,4-Dichlorobenzene	ug/L	15	15	0.260	0.330	0.325	0.330				
Acetone	ug/L	15	15	6.20	10.0	9.75	10.0				
Bromodichloromethane	ug/L	15	15	0.180	0.260	0.185	0.180				
Bromoform	ug/L	15	15	0.260	0.620	0.284	0.260				
Carbon disulfide	ug/L	15	15	0.400	1.20	1.15	1.20				
Chloroform	ug/L	15	15	0.140	2.30	0.284	0.140				
Dibromochloromethane	ug/L	15	15	0.210	0.410	0.223	0.210				
Dibromomethane	ug/L	15	15	0.210	0.460	0.227	0.210				
					Appendix I M	etals					
Copper	ug/L	15	12	2.50	36.0	5.13	2.50	5.30	36.0	15.6	5.60
Nickel	ug/L	15	12	2.50	86.0	11.4	2.50	5.50	86.0	47.0	49.4
Silver	ug/L	15	15	2.50	2.50	2.50	2.50				
Vanadium	ug/L	15	14	2.50	13.9	3.26	2.50	13.9	13.9	13.9	13.9
Zinc	ug/L	15	13	5.00	42.7	8.01	5.00	12.5	42.7	27.6	27.6
				Ар	opendix III Con	stituents					
Boron	ug/L	15	6	0.570	49.4	22.3	16.6	9.70	49.4	36.3	41.9
Calcium	ug/L	15	0	117,000	194,000	161,067	161,000	117,000	194,000	161,067	161,000
Chloride	mg/L	15	0	893	1,280	1,093	1,060	893	1,280	1,093	1,060
Fluoride	mg/L	15	1	0.0200	0.610	0.368	0.420	0.210	0.610	0.393	0.425
pH (Field)	S.U.	13	0	7.10	7.50	7.27	7.30	7.10	7.50	7.27	7.30
Sulfate	mg/L	15	0	9.10	174	80.6	88.1	9.10	174	80.6	88.1
Total Dissolved Solids	mg/L	15	0	256	3,180	1,921	2,140	256	3,180	1,921	2,140
				Ар	pendix IV Con	stituents					
Antimony	ug/L	15	8	3.90	11.4	6.53	3.90	5.80	11.4	9.53	10.1
Arsenic	ug/L	15	15	2.50	5.00	4.00	5.00				
Barium	ug/L	15	0	353	855	608	570	353	855	608	570
Beryllium	ug/L	15	15	0.500	0.500	0.500	0.500				
Cadmium	ug/L	15	15	0.500	0.500	0.500	0.500				

┝	D	2

		Sample	No.		With NDs=MD	Ls Included			With NDs R	emoved	
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	15	8	2.50	179	21.6	2.50	5.30	179	43.4	10.3
Cobalt	ug/L	15	14	2.50	6.20	2.75	2.50	6.20	6.20	6.20	6.20
Fluoride	mg/L	15	1	0.0200	0.610	0.368	0.420	0.210	0.610	0.393	0.425
Lead	ug/L	15	14	2.50	7.30	2.82	2.50	7.30	7.30	7.30	7.30
Lithium	ug/L	15	0	36.7	236	107	90.2	36.7	236	107	90.2
Mercury	ug/L	15	15	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	15	0	5.10	13.8	8.83	8.10	5.10	13.8	8.83	8.10
Radium-226	pCi/L	14	0	0.213	1.92	0.896	0.953				
Radium-228	pCi/L	14	0	0.387	2.27	1.42	1.53				
Selenium	ug/L	15	15	5.00	5.00	5.00	5.00				
Thallium	ug/L	15	15	0.0200	5.00	2.02	0.0300				
Total Radium	pCi/L	14	0	0.857	3.92	2.31	2.30				

- 1. ND = not detected above the method detection limit.
- 2. MDL = method detection limit.
- 3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.
- 4. Numbers are displayed using the same number of significant figures as reported by the laboratory.
- 5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 18: Summary of Well MW-4 Data Set Descriptive Statistics

		Sample	No. of		With NDs=MDL	s Included			With NDs Re	moved	
Constituent	Unit	Size	NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
	_				Appendix I VOC	s					
1,4-Dichlorobenzene	ug/L	15	15	0.260	0.330	0.325	0.330				
Acetone	ug/L	15	15	6.20	10.0	9.75	10.0				
Bromodichloromethane	ug/L	15	15	0.180	0.260	0.185	0.180				
Bromoform	ug/L	15	15	0.260	0.620	0.284	0.260				
Carbon disulfide	ug/L	15	15	0.400	1.20	1.15	1.20				
Chloroform	ug/L	15	15	0.140	2.30	0.284	0.140				
Dibromochloromethane	ug/L	15	15	0.210	0.410	0.223	0.210				
Dibromomethane	ug/L	15	15	0.210	0.460	0.227	0.210				
				ļ	Appendix I Meta	ls					
Copper	ug/L	15	15	2.50	2.50	2.50	2.50				
Nickel	ug/L	15	10	2.50	6.90	3.61	2.50	5.20	6.90	5.82	5.60
Silver	ug/L	15	15	2.50	2.50	2.50	2.50				
Vanadium	ug/L	15	15	2.50	2.50	2.50	2.50				
Zinc	ug/L	15	14	5.00	29.4	6.63	5.00	29.4	29.4	29.4	29.4
				Арре	endix III Constit	uents					
Boron	ug/L	15	7	0.570	165	14.6	5.70	5.70	165	26.3	6.60
Calcium	ug/L	15	0	17,900	68,200	51,693	62,100	17,900	68,200	51,693	62,100
Chloride	mg/L	15	0	144	567	409	492	144	567	409	492
Fluoride	mg/L	15	0	0.210	0.420	0.321	0.310	0.210	0.420	0.321	0.310
pH (Field)	S.U.	13	0	6.10	6.50	6.33	6.33	6.10	6.50	6.33	6.33
Sulfate	mg/L	15	0	3.40	12.3	8.84	10.0	3.40	12.3	8.84	10.0
Total Dissolved Solids	mg/L	15	0	395	1,260	969	1,130	395	1,260	969	1,130
				Арре	endix IV Constit	uents					
Antimony	ug/L	15	14	3.80	5.00	3.94	3.90	5.00	5.00	5.00	5.00
Arsenic	ug/L	15	15	2.50	5.00	4.00	5.00				
Barium	ug/L	15	0	85.9	332	245	271	85.9	332	245	271
Beryllium	ug/L	15	15	0.500	0.500	0.500	0.500				
Cadmium	ug/L	15	15	0.500	0.500	0.500	0.500				

|--|

		Sample	No. of		With NDs=MDLs	s Included			With NDs Re	<u> </u>		
Constituent	Unit	Size	NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
Chromium	ug/L	15	14	2.50	5.70	2.71	2.50	5.70	5.70	5.70	5.70	
Cobalt	ug/L	15	11	2.50	8.40	3.57	2.50	5.30	8.40	6.50	6.15	
Fluoride	mg/L	15	0	0.210	0.420	0.321	0.310	0.210	0.420	0.321	0.310	
Lead	ug/L	15	15	2.50	2.50	2.50	2.50					
Lithium	ug/L	15	0	15.8	29.2	24.9	26.2	15.8	29.2	24.9	26.2	
Mercury	ug/L	15	15	0.100	0.100	0.100	0.100					
Molybdenum	ug/L	15	14	2.50	8.90	2.93	2.50	8.90	8.90	8.90	8.90	
Radium-226	pCi/L	14	0	-0.120	0.913	0.393	0.415					
Radium-228	pCi/L	14	0	0.0190	1.35	0.506	0.468					
Selenium	ug/L	15	15	5.00	5.00	5.00	5.00					
Thallium	ug/L	15	15	0.0200	5.00	2.02	0.0300					
Total Radium	pCi/L	14	0	0.240	2.26	0.907	0.675					

- 1. ND = not detected above the method detection limit.
- 2. MDL = method detection limit.
- 3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.
- 4. Numbers are displayed using the same number of significant figures as reported by the laboratory.
- 5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 19: Summary of Well MW-5 Data Set Descriptive Statistics

		Sample	No. of		With NDs=MDL	s Included			With NDs Re	moved	
Constituent	Unit	Size	NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
				A	ppendix I VOC	s					
1,4-Dichlorobenzene	ug/L	15	15	0.260	0.330	0.325	0.330				
Acetone	ug/L	15	15	6.20	10.0	9.75	10.0				
Bromodichloromethane	ug/L	15	15	0.180	0.260	0.185	0.180				
Bromoform	ug/L	15	15	0.260	0.620	0.284	0.260				
Carbon disulfide	ug/L	15	15	0.400	1.20	1.15	1.20				
Chloroform	ug/L	15	15	0.140	2.30	0.284	0.140				
Dibromochloromethane	ug/L	15	15	0.210	0.410	0.223	0.210				
Dibromomethane	ug/L	15	15	0.210	0.460	0.227	0.210				
				А	ppendix I Meta	ls					
Copper	ug/L	15	14	2.50	6.90	2.79	2.50	6.90	6.90	6.90	6.90
Nickel	ug/L	15	13	2.50	9.00	3.31	2.50	8.10	9.00	8.55	8.55
Silver	ug/L	15	15	2.50	2.50	2.50	2.50				
Vanadium	ug/L	15	15	2.50	2.50	2.50	2.50				
Zinc	ug/L	15	11	5.00	36.1	9.49	5.00	13.5	36.1	21.9	18.9
				Арре	ndix III Constit	uents					
Boron	ug/L	15	5	0.570	39.3	9.52	10.2	9.80	39.3	13.8	11.0
Calcium	ug/L	15	0	9,140	16,900	11,969	11,700	9,140	16,900	11,969	11,700
Chloride	mg/L	15	0	17.6	22.2	19.7	19.6	17.6	22.2	19.7	19.6
Fluoride	mg/L	15	0	0.410	0.680	0.519	0.520	0.410	0.680	0.519	0.520
pH (Field)	S.U.	13	0	6.80	7.26	7.02	7.00	6.80	7.26	7.02	7.00
Sulfate	mg/L	15	0	2.60	5.60	3.82	3.70	2.60	5.60	3.82	3.70
Total Dissolved Solids	mg/L	15	0	194	1,160	294	233	194	1,160	294	233
				Арре	ndix IV Constit	uents					
Antimony	ug/L	15	15	3.80	3.90	3.86	3.90				
Arsenic	ug/L	15	15	2.50	5.00	4.00	5.00				
Barium	ug/L	15	0	90.7	129	106	102	90.7	129	106	102
Beryllium	ug/L	15	15	0.500	0.500	0.500	0.500				
Cadmium	ug/L	15	15	0.500	0.500	0.500	0.500				

|--|

	Sample	No. of		With NDs=MDL	s Included			With NDs Re	moved	
Unit	Size	NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
ug/L	15	11	2.50	16.8	4.67	2.50	5.10	16.8	10.6	10.3
ug/L	15	15	2.50	2.50	2.50	2.50				
mg/L	15	0	0.410	0.680	0.519	0.520	0.410	0.680	0.519	0.520
ug/L	15	15	2.50	2.50	2.50	2.50				
ug/L	15	0	6.30	9.90	8.45	8.90	6.30	9.90	8.45	8.90
ug/L	15	15	0.100	0.100	0.100	0.100				
ug/L	15	15	2.50	2.50	2.50	2.50				
pCi/L	14	0	-0.142	0.592	0.0961	0.0749				
pCi/L	14	0	-0.0690	1.08	0.397	0.364				
ug/L	15	15	5.00	5.00	5.00	5.00				
ug/L	15	14	0.0200	14.8	2.67	0.0300	14.8	14.8	14.8	14.8
pCi/L	14	0	0.0766	1.15	0.526	0.457				
	ug/L mg/L ug/L ug/L ug/L ug/L pCi/L ug/L ug/L	Ug/L 15 ug/L 15 mg/L 15 ug/L 14 ug/L 15 ug/L 15 ug/L 15	Unit Size NDs ug/L 15 11 ug/L 15 15 mg/L 15 0 ug/L 15 0 ug/L 15 15 ug/L 14 0 pCi/L 14 0 ug/L 15 15	Unit Size NDs Minimum ug/L 15 11 2.50 ug/L 15 15 2.50 mg/L 15 0 0.410 ug/L 15 15 2.50 ug/L 15 0 6.30 ug/L 15 15 0.100 ug/L 15 15 2.50 ug/L 15 15 0.100 ug/L 15 15 2.50 pCi/L 14 0 -0.142 pCi/L 14 0 -0.0690 ug/L 15 15 5.00 ug/L 15 14 0.0200	Unit Sample Size No. of NDs Minimum Maximum ug/L 15 11 2.50 16.8 ug/L 15 15 2.50 2.50 mg/L 15 0 0.410 0.680 ug/L 15 15 2.50 2.50 ug/L 15 0 0.410 0.680 ug/L 15 0 0.410 0.680 ug/L 15 15 2.50 2.50 ug/L 15 15 0.0100 0.100 ug/L 15 15 0.100 0.100 ug/L 15 15 2.50 2.50 pCi/L 14 0 -0.142 0.592 pCi/L 14 0 -0.0690 1.08 ug/L 15 15 5.00 5.00 ug/L 15 14 0.0200 14.8	UnitSizeNDsMinimumMaximumMeanug/L15112.5016.84.67ug/L15152.502.502.50mg/L1500.4100.6800.519ug/L15152.502.502.50ug/L15152.502.502.50ug/L15152.502.502.50ug/L15150.1000.1000.100ug/L15152.502.502.50pCi/L140-0.1420.5920.0961pCi/L140-0.06901.080.397ug/L15155.005.005.00ug/L15140.020014.82.67	Unit Sample Size No. of NDs Minimum Maximum Mean Median ug/L 15 11 2.50 16.8 4.67 2.50 ug/L 15 15 2.50 2.50 2.50 2.50 ug/L 15 0 0.410 0.680 0.519 0.520 ug/L 15 0 6.30 9.90 8.45 8.90 ug/L 15 0.100 0.100 0.100 0.100 ug/L 15 5.00 2.50 2.50 2.50 pCi/L 14 0 -0.0690 1.08 0.397 0.364 ug/L 15 5.00 5.00 5.00 5.00 5.00	Unit Sample Size No. of NDs Minimum Maximum Mean Median Minimum ug/L 15 11 2.50 16.8 4.67 2.50 5.10 ug/L 15 15 2.50 2.50 2.50 2.50 mg/L 15 0 0.410 0.680 0.519 0.520 0.410 ug/L 15 0 0.410 0.680 0.519 0.500 ug/L 15 15 0.100 0.100 0.100 pCi/L 14 0 -0.0	Unit Sample Size No. of NDs Minimum Maximum Mean Median Minimum Maximum ug/L 15 11 2.50 16.8 4.67 2.50 5.10 16.8 ug/L 15 11 2.50 2.50 2.50 2.50 mg/L 15 0 0.410 0.680 0.519 0.520 0.410 0.680 ug/L 15 0 0.410 0.680 0.519 0.520 0.410 0.680 ug/L 15 0 0.410 0.680 0.519 0.520 0.410 0.680 ug/L 15 0 0.410 0.680 0.519 0.520 0.410 0.680 ug/L 15 15 2.50 2.50 2.50 ug/L 15 0.100 0.100 0.100 - ug/L 14 0 -0.142 0.592 <t< td=""><td>Unit Sample Size No. of NDs Minimum Maximum Mean Median Minimum Maximum Mean ug/L 15 11 2.50 16.8 4.67 2.50 5.10 16.8 10.6 ug/L 15 15 2.50 2.50 2.50 5.10 16.8 10.6 ug/L 15 15 2.50 2.50 2.50 mg/L 15 0 0.410 0.680 0.519 0.520 0.410 0.680 0.519 ug/L 15 15 2.50 2.50 2.50 ug/L 15 0.0 6.30 9.90 8.45 8.90 6.30 9.90 8.45 ug/L 15 0.100 0.100 0.100 ug/L 15 15 0.500 2.50 2.50 ug/L</td></t<>	Unit Sample Size No. of NDs Minimum Maximum Mean Median Minimum Maximum Mean ug/L 15 11 2.50 16.8 4.67 2.50 5.10 16.8 10.6 ug/L 15 15 2.50 2.50 2.50 5.10 16.8 10.6 ug/L 15 15 2.50 2.50 2.50 mg/L 15 0 0.410 0.680 0.519 0.520 0.410 0.680 0.519 ug/L 15 15 2.50 2.50 2.50 ug/L 15 0.0 6.30 9.90 8.45 8.90 6.30 9.90 8.45 ug/L 15 0.100 0.100 0.100 ug/L 15 15 0.500 2.50 2.50 ug/L

- 1. ND = not detected above the method detection limit.
- 2. MDL = method detection limit.
- 3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.
- 4. Numbers are displayed using the same number of significant figures as reported by the laboratory.
- 5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 20: Summary of Well MW-6 Data Set Descriptive Statistics

		Sample	No. of		With NDs=MDL	s Included			With NDs Re	moved	
Constituent	Unit	Size	NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
					Appendix I VOC	s					
1,4-Dichlorobenzene	ug/L	15	15	0.260	0.330	0.325	0.330				
Acetone	ug/L	15	15	6.20	10.0	9.75	10.0				
Bromodichloromethane	ug/L	15	15	0.180	0.260	0.185	0.180				
Bromoform	ug/L	15	15	0.260	0.620	0.284	0.260				
Carbon disulfide	ug/L	15	15	0.400	1.20	1.15	1.20				
Chloroform	ug/L	15	15	0.140	2.30	0.284	0.140				
Dibromochloromethane	ug/L	15	15	0.210	0.410	0.223	0.210				
Dibromomethane	ug/L	15	15	0.210	0.460	0.227	0.210				
				ļ	Appendix I Meta	ls					
Copper	ug/L	15	15	2.50	2.50	2.50	2.50				
Nickel	ug/L	15	15	2.50	2.50	2.50	2.50				
Silver	ug/L	15	15	2.50	2.50	2.50	2.50				
Vanadium	ug/L	15	15	2.50	2.50	2.50	2.50				
Zinc	ug/L	15	12	5.00	17.7	6.72	5.00	11.3	17.7	13.6	11.8
				Арре	endix III Constit	uents					
Boron	ug/L	15	7	0.570	10.8	4.86	6.10	6.10	10.8	8.07	8.15
Calcium	ug/L	15	0	31,300	39,200	34,473	34,400	31,300	39,200	34,473	34,400
Chloride	mg/L	15	0	15.3	276	228	240	15.3	276	228	240
Fluoride	mg/L	15	0	0.180	0.520	0.395	0.410	0.180	0.520	0.395	0.410
pH (Field)	S.U.	13	0	6.23	7.00	6.55	6.60	6.23	7.00	6.55	6.60
Sulfate	mg/L	15	0	48.7	214	110	90.9	48.7	214	110	90.9
Total Dissolved Solids	mg/L	15	0	371	946	684	689	371	946	684	689
				Арре	endix IV Constit	uents					
Antimony	ug/L	15	15	3.80	3.90	3.86	3.90				
Arsenic	ug/L	15	15	2.50	5.00	4.00	5.00				
Barium	ug/L	15	0	88.3	142	109	104	88.3	142	109	104
Beryllium	ug/L	15	15	0.500	0.500	0.500	0.500				
Cadmium	ug/L	15	15	0.500	0.500	0.500	0.500				

		Sample	No. of		With NDs=MDL	s Included			With NDs Re	moved	
Constituent	Unit	Size	NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	15	13	2.50	6.00	2.92	2.50	5.30	6.00	5.65	5.65
Cobalt	ug/L	15	15	2.50	2.50	2.50	2.50				
Fluoride	mg/L	15	0	0.180	0.520	0.395	0.410	0.180	0.520	0.395	0.410
Lead	ug/L	15	15	2.50	2.50	2.50	2.50				
Lithium	ug/L	15	0	27.9	60.5	43.9	45.3	27.9	60.5	43.9	45.3
Mercury	ug/L	15	14	0.100	0.320	0.115	0.100	0.320	0.320	0.320	0.320
Molybdenum	ug/L	15	14	2.50	5.40	2.69	2.50	5.40	5.40	5.40	5.40
Radium-226	pCi/L	14	0	-0.0750	0.910	0.227	0.177				
Radium-228	pCi/L	14	0	0.148	1.07	0.646	0.654				
Selenium	ug/L	15	15	5.00	5.00	5.00	5.00				
Thallium	ug/L	15	14	0.0200	6.20	2.10	0.0300	6.20	6.20	6.20	6.20
Total Radium	pCi/L	14	0	0.148	1.47	0.883	0.910				

- 1. ND = not detected above the method detection limit.
- 2. MDL = method detection limit.
- 3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.
- 4. Numbers are displayed using the same number of significant figures as reported by the laboratory.
- 5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 20: Summary of Well MW-7R Data Set Descriptive Statistics

				١	With NDs=MDL	s Included			With NDs Re	With NDs Removed			
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median		
				Append	lix I VOCs								
1,4-Dichlorobenzene	ug/L	5	5	0.260	0.330	0.316	0.330						
Acetone	ug/L	5	5	6.20	10.0	9.24	10.0						
Bromodichloromethane	ug/L	5	5	0.180	0.260	0.196	0.180						
Bromoform	ug/L	5	5	0.260	0.620	0.332	0.260						
Carbon disulfide	ug/L	5	5	0.400	1.20	1.04	1.20						
Chloroform	ug/L	5	5	0.140	2.30	0.572	0.140						
Dibromochloromethane	ug/L	5	5	0.210	0.410	0.250	0.210						
Dibromomethane	ug/L	5	5	0.210	0.460	0.260	0.210						
				Append	ix I Metals								
Copper	ug/L	5	4	2.50	7.10	3.42	2.50	7.10	7.10	7.10	7.10		
Nickel	ug/L	5	3	2.50	18.0	8.58	2.50	17.4	18.0	17.7	17.7		
Silver	ug/L	5	5	2.50	2.50	2.50	2.50						
Vanadium	ug/L	5	4	2.50	17.6	5.52	2.50	17.6	17.6	17.6	17.6		
Zinc	ug/L	5	4	5.00	10.7	6.14	5.00	10.7	10.7	10.7	10.7		
				Appendix II	Constituents								
Boron	ug/L	5	1	2.60	25.3	15.0	16.5	13.8	25.3	18.1	16.6		
Calcium	ug/L	5	0	74,000	89,700	84,160	87,700	74,000	89,700	84,160	87,700		
Chloride	mg/L	5	0	279	312	290	285	279	312	290	285		
Fluoride	mg/L	5	0	0.110	0.320	0.158	0.120	0.110	0.320	0.158	0.120		
pH (Field)	S.U.	5	0	7.27	9.60	7.95	7.60	7.27	9.60	7.95	7.60		
Sulfate	mg/L	5	0	18.3	51.2	26.3	20.0	18.3	51.2	26.3	20.0		
Total Dissolved Solids	mg/L	5	0	740	855	807	820	740	855	807	820		
				Appendix IV	Constituents	-							
Antimony	ug/L	5	5	3.90	3.90	3.90	3.90						
Arsenic	ug/L	5	5	5.00	5.00	5.00	5.00						
Barium	ug/L	5	0	50.1	255	192	212	50.1	255	192	212		
Beryllium	ug/L	5	5	0.500	0.500	0.500	0.500						
Cadmium	ug/L	5	5	0.500	0.500	0.500	0.500						

Charah, LLC Summary	of Statis	tical Analysis a	nd Evaluatior	for SSIs							FJS
				١	With NDs=MDL	s Included			With NDs Re	moved	
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	5	0	6.50	33.7	18.2	9.60	6.50	33.7	18.2	9.60
Cobalt	ug/L	5	5	2.50	2.50	2.50	2.50				
Fluoride	mg/L	5	0	0.110	0.320	0.158	0.120	0.110	0.320	0.158	0.120
Lead	ug/L	5	5	2.50	2.50	2.50	2.50				
Lithium	ug/L	5	0	5.60	25.4	19.3	23.0	5.60	25.4	19.3	23.0
Mercury	ug/L	5	5	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	5	4	2.50	19.5	5.90	2.50	19.5	19.5	19.5	19.5
Radium-226	pCi/L	4	0	-0.0590	0.987	0.265	0.0660				
Radium-228	pCi/L	4	0	-0.454	1.01	0.384	0.489				
Selenium	ug/L	5	5	5.00	5.00	5.00	5.00				
Thallium	ug/L	5	3	0.0280	0.480	0.138	0.0300	0.120	0.480	0.300	0.300
Total Radium	pCi/L	4	0	0.0741	2.00	0.778	0.518				

- 1. ND = not detected above the method detection limit.
- 2. MDL = method detection limit.
- 3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.
- 4. Numbers are displayed using the same number of significant figures as reported by the laboratory.
- If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs. 5.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 21: Summary of Well MW-8 Data Set Descriptive Statistics

					With NDs=MD	Ls Included			With NDs R	emoved	
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
				Арре	ndix I VOCs						
1,4-Dichlorobenzene	ug/L	15	15	0.260	0.330	0.325	0.330				
Acetone	ug/L	15	15	6.20	10.0	9.75	10.0				
Bromodichloromethane	ug/L	15	15	0.180	0.260	0.185	0.180				
Bromoform	ug/L	15	15	0.260	0.620	0.284	0.260				
Carbon disulfide	ug/L	15	15	0.400	1.20	1.15	1.20				
Chloroform	ug/L	15	15	0.140	2.30	0.284	0.140				
Dibromochloromethane	ug/L	15	15	0.210	0.410	0.223	0.210				
Dibromomethane	ug/L	15	15	0.210	0.460	0.227	0.210				
				Арреі	ndix I Metals						
Copper	ug/L	15	14	2.50	10.2	3.01	2.50	10.2	10.2	10.2	10.2
Nickel	ug/L	15	11	2.50	42.1	7.10	2.50	10.8	42.1	19.8	13.1
Silver	ug/L	15	15	2.50	2.50	2.50	2.50				
Vanadium	ug/L	15	15	2.50	2.50	2.50	2.50				
Zinc	ug/L	15	7	5.00	50.7	16.6	13.6	13.6	50.7	26.8	20.4
	-			Appendix	III Constituer	nts					
Boron	ug/L	15	6	0.570	12.3	6.21	8.90	8.70	12.3	9.74	9.30
Calcium	ug/L	15	0	98,100	194,000	129,560	117,000	98,100	194,000	129,560	117,000
Chloride	mg/L	15	0	355	939	519	437	355	939	519	437
Fluoride	mg/L	15	15	0.0200	0.0500	0.0340	0.0200				
pH (Field)	S.U.	13	0	6.70	7.20	6.94	6.94	6.70	7.20	6.94	6.94
Sulfate	mg/L	15	0	4.40	8.00	6.43	6.30	4.40	8.00	6.43	6.30
Total Dissolved Solids	mg/L	15	0	224	1,530	1,003	944	224	1,530	1,003	944
	_			Appendix	IV Constituer	nts					
Antimony	ug/L	15	9	3.90	10.1	5.47	3.90	6.50	10.1	7.83	7.55
Arsenic	ug/L	15	15	2.50	5.00	4.00	5.00				
Barium	ug/L	15	0	1,020	1,550	1,225	1,200	1,020	1,550	1,225	1,200
Beryllium	ug/L	15	15	0.500	0.500	0.500	0.500				
Cadmium	ug/L	15	15	0.500	0.500	0.500	0.500				

	or orall										トノく
					With NDs=MDI	_s Included			With NDs R	emoved	
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	15	11	2.50	82.0	12.0	2.50	16.6	82.0	38.1	26.9
Cobalt	ug/L	15	15	2.50	2.50	2.50	2.50				
Fluoride	mg/L	15	15	0.0200	0.0500	0.0340	0.0200				
Lead	ug/L	15	15	2.50	2.50	2.50	2.50				
Lithium	ug/L	15	0	21.7	50.1	31.0	27.7	21.7	50.1	31.0	27.7
Mercury	ug/L	15	14	0.100	0.370	0.118	0.100	0.370	0.370	0.370	0.370
Molybdenum	ug/L	15	14	2.50	5.60	2.71	2.50	5.60	5.60	5.60	5.60
Radium-226	pCi/L	14	0	0.00	1.16	0.573	0.572				
Radium-228	pCi/L	14	0	0.239	1.20	0.742	0.648				
Selenium	ug/L	15	15	5.00	5.00	5.00	5.00				
Thallium	ug/L	15	14	0.0200	8.80	2.27	0.0300	8.80	8.80	8.80	8.80

1.94

1.31

1.38

Notes:

- 1. ND = not detected above the method detection limit.
- 2. MDL = method detection limit.

Total Radium

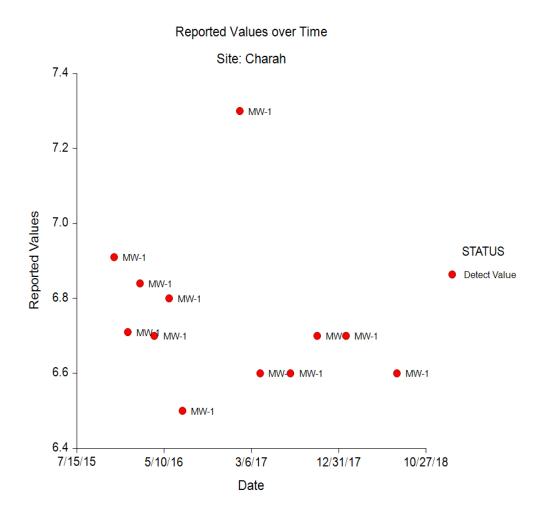
3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

0

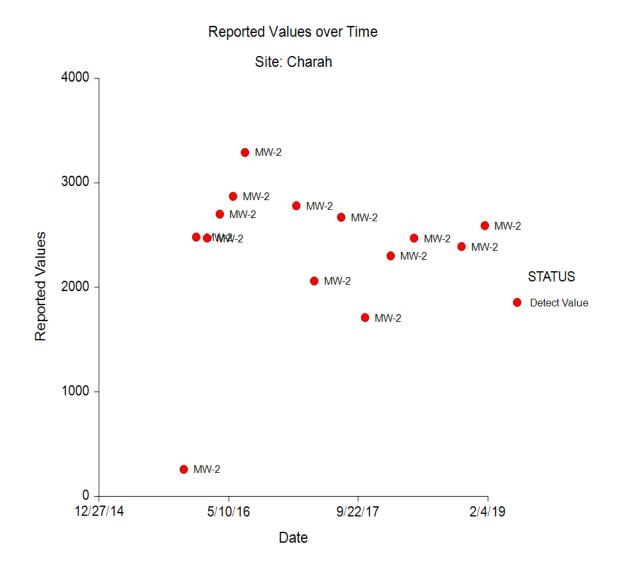
0.454

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

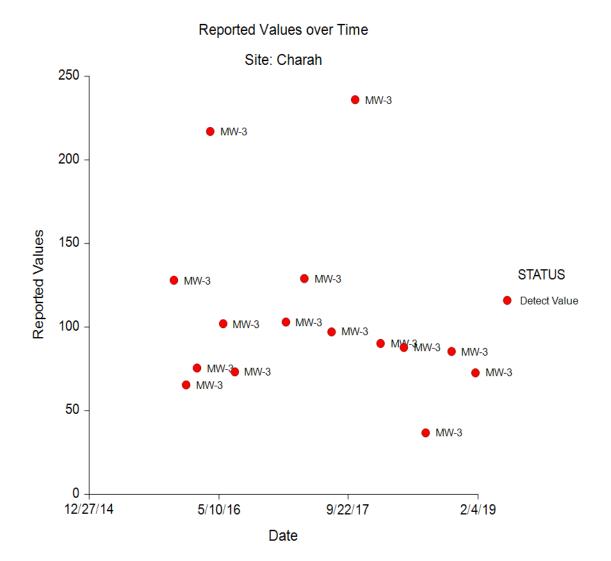
pCi/L

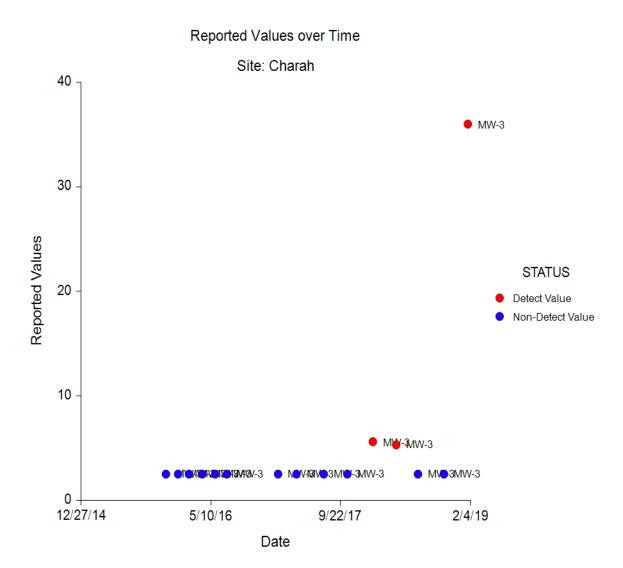

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

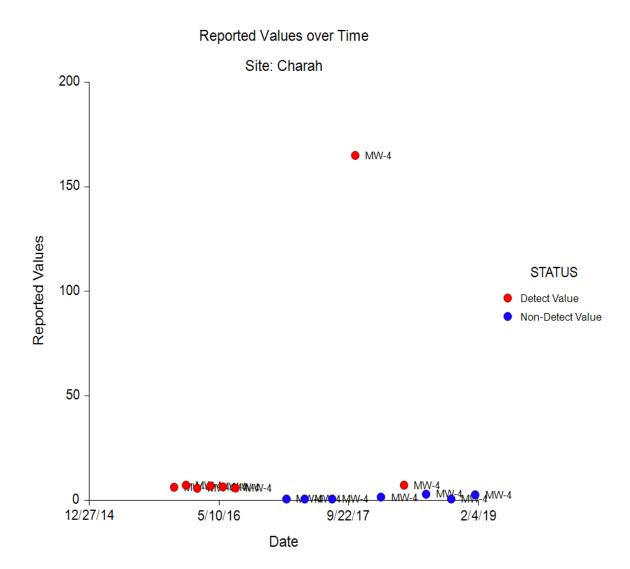
14

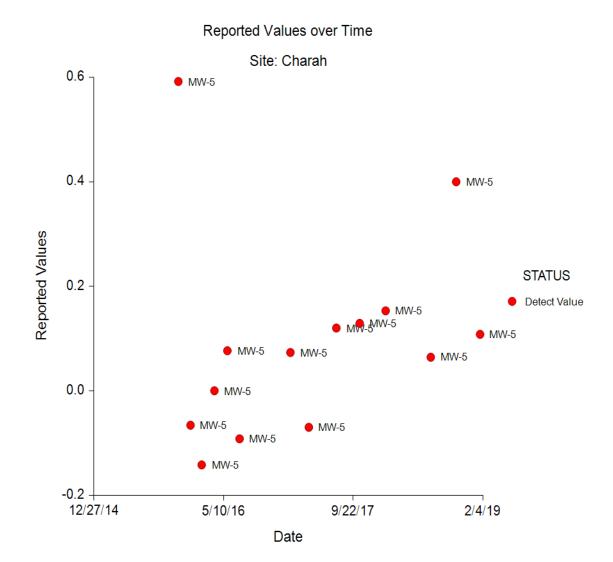


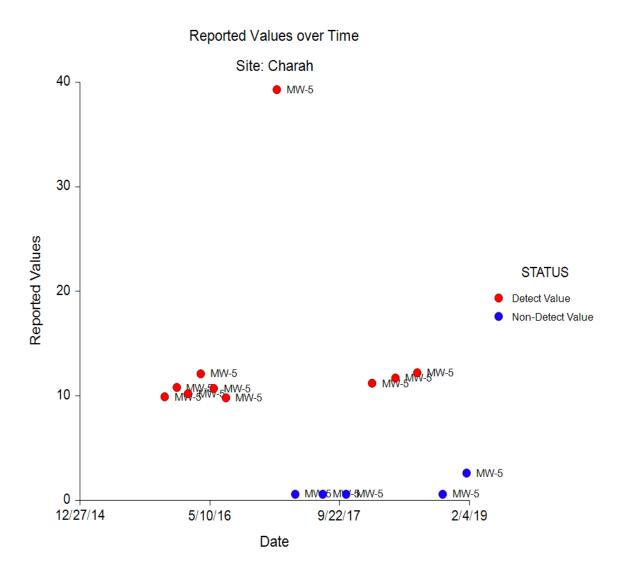
6 Appendix E.B: Scatter Plots for Constituents with Downgradient Statistical Outliers

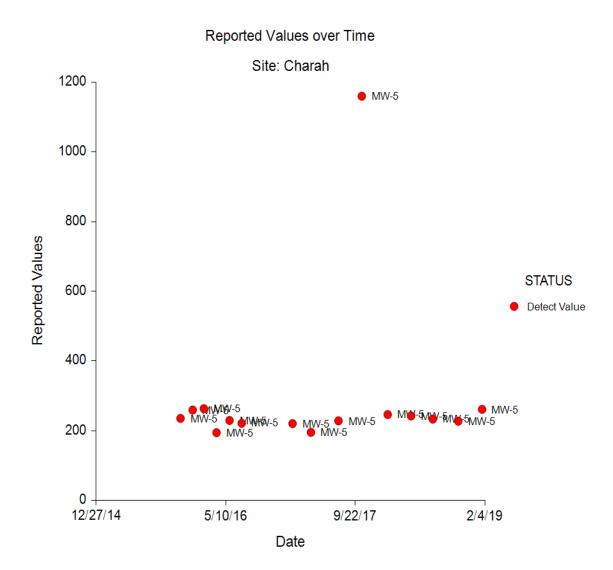


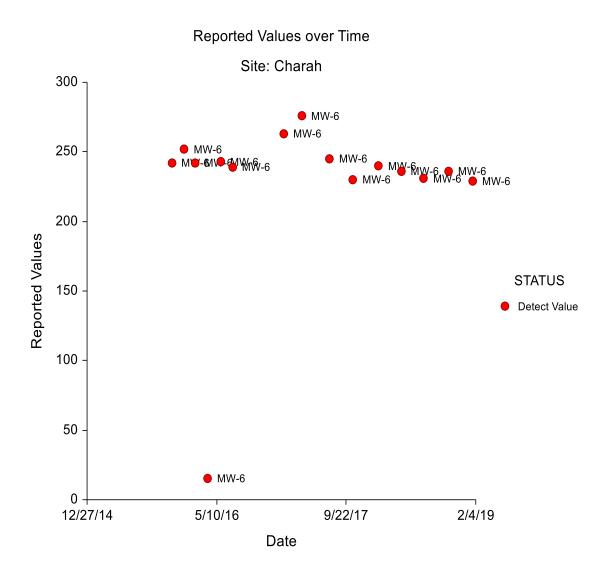

Figure 6: Total Dissolved Solids (mg/L) vs. Time (MW-2)

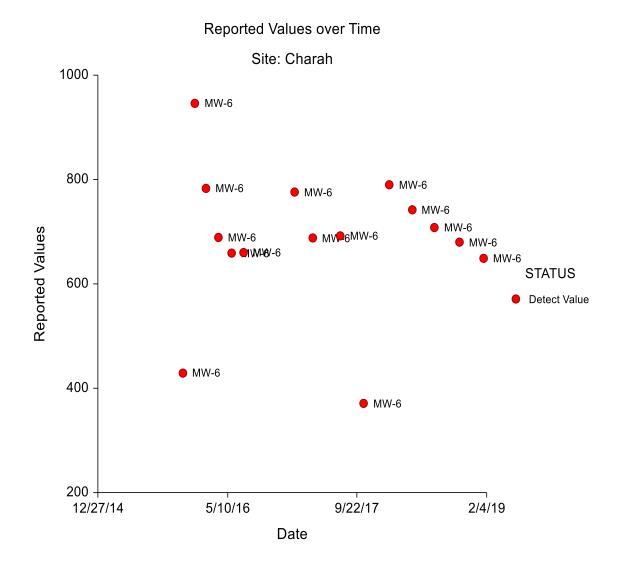












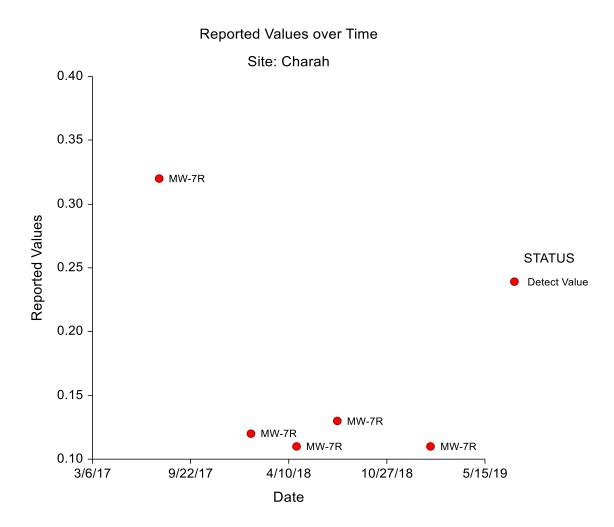
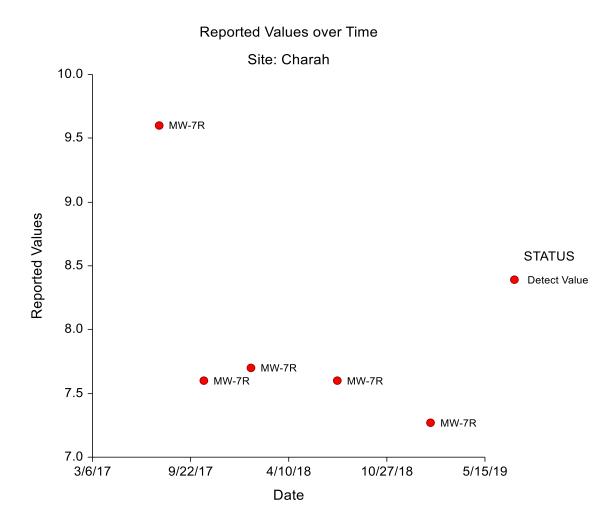
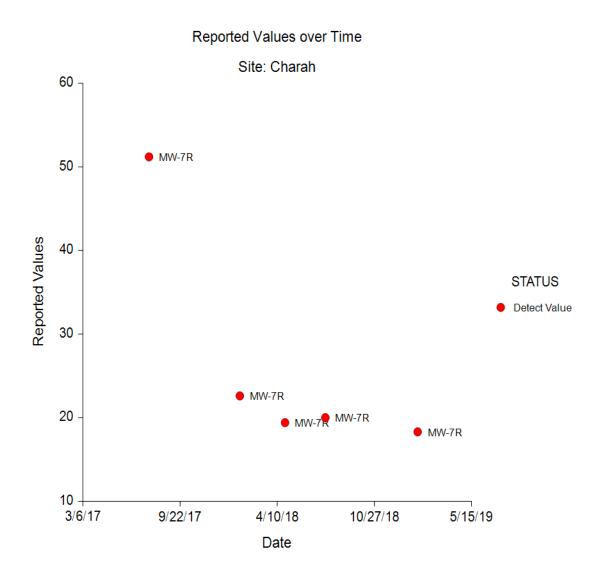


Figure 14: Total Dissolved Solids (mg/L) vs. Time (MW-6)



47



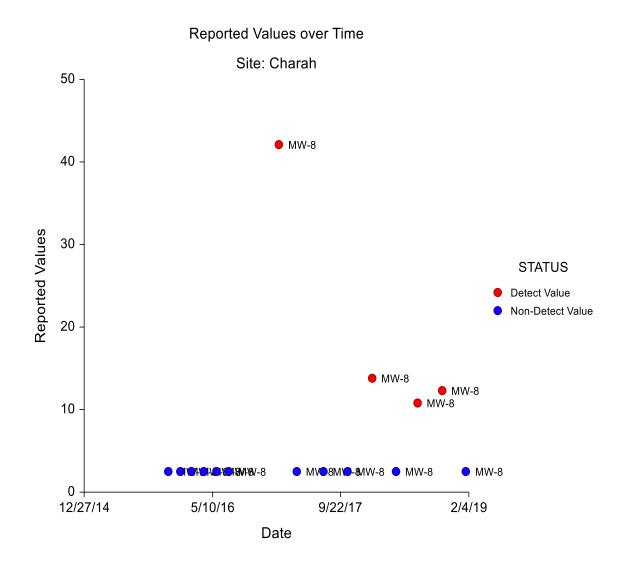


Figure 17: Sulfate Concentrations (mg/L) vs. Time (MW-7R)

Figure 18: Nickel Concentrations (ug/L) vs. Time (MW-8)

7 References

[1] Singh, A. and Ashok Singh. ProUCL 5.1.002 Technical Guide Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R07/041, 2015.

[2] NCSS 9 Statistical Software (2013). NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss.

[3] R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

[4] IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

FSS

HDR Engineering, Inc. of the Carolinas 440 S Church Street, Suite 1000 Charlotte, NC 28202-2075 704.338.6700 NC License F0116

hdrinc.com

© 2018 HDR, Inc., all rights reserved

Attachment B – 2019 Second Semi-Annual Detection Monitoring Report

FX

DENR USE ONLY: Paper R NC DENR	eport Electronic Data - Email CD (d		Enviro	onmental Monitorir
Division of Waste Manager	nent - Solid Waste			Reporting For
	ation attached to it are "Public Records" a		al Statute 132-1. As s	
available for inspection and exam	ination by any person upon request (NC G	General Statute 132-6).		
instructions:				
	each individually monitored unit.			
 Please type or print le Attach a notification tab 	ble with values that attain or exceed NC 2	groundwater standard	s or NC 2B surface w	ater standards. The notificat
must include a prelimina	ary analysis of the cause and significance			
 condition, etc.). Attach a notification tab 	le of any groundwater or surface water va	lues that equal or excee	d the reporting limits.	
	ble of any methane gas values that attain (or exceed explosive gas	levels. This includes	s any structures on or nearby
facility (NCAC 13B 162 Send the original signe	d and sealed form, any tables, and Electr	onic Data Deliverable to	: Compliance Unit, N	CDENR-DWM, Solid Waste
Section, 1646 Mail Serv	vice Center, Raleigh, NC 27699-1646.			
Solid Waste Monitoring D	Data Submittal Information			
Name of entity submitting data	(laboratory, consultant, facility owner):			
Green Meadow - Charah Solu	itions. Inc.			
	ta formatting. Include data preparer's r	-	er and E-mail addres	SS:
Name: Mark Filardi, L.G.		ie: 704-338-6700		
E-mail: mark.filardi@hdrinc.com	1			
			NC Landfill Rule:	Actual sampling dates (e.g
acility name:	Facility Address:	Facility Permit #	(.0500 or .1600)	October 20-24, 2006)
harah, LLC	1271 Moncure-Flatwood Road	1910-STRUT-	CAMA	July 8-12, 2019
rickhaven No. 2 Mine	Chatham County	2015		
rickhaven No. 2 Mine ract "A"	Chatham County Moncure, NC			Corrective Action
rickhaven No. 2 Mine ract "A" Environmental Status: (Check Initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring of	Chatham County Moncure, NC all that apply) ring X Detection Monitoring all that apply) fata from monitoring wells data from private water supply wells	2015	Nonitoring	Corrective Action
rickhaven No. 2 Mine ract "A" Environmental Status: (Check i Initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring of Leachate monitoring data	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells	2015 X Assessment M Methane gas mon	Nonitoring	Corrective Action
rickhaven No. 2 Mine ract "A" Environmental Status: (Check i Initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Coundwater monitoring data Leachate monitoring data Surface water monitoring	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells	2015 Assessment M Methane gas mon Corrective action	Nonitoring	Corrective Action
rickhaven No. 2 Mine ract "A" Environmental Status: (Check Initial/Background Monitor Fype of data submitted: (Check Groundwater monitoring of Leachate monitoring data Surface water monitoring Notification attached?	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells	2015 Assessment M Methane gas mon Corrective action	Nonitoring	Corrective Action
rickhaven No. 2 Mine ract "A" Environmental Status: (Check Initial/Background Monitor Groundwater monitoring of Coundwater monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value	Chatham County Moncure, NC all that apply) ring X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface water	2015 Assessment M Methane gas mon Corrective action Other(specify) ater standard is attached	Nonitoring	groundwater and surface wa
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring conditional data Surface water monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface was analytical values, NC 2L groundwater stan cause and significance of any concentrat	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion.	Monitoring	groundwater and surface wa
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Fype of data submitted: (Check Groundwater monitoring conditional data Surface water monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface wa analytical values, NC 2L groundwater stan cause and significance of any concentrat es exceeding an explosive methane gas li	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion.	Monitoring	groundwater and surface wa
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring data Leachate monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive meth	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface wa analytical values, NC 2L groundwater stan cause and significance of any concentrat es exceeding an explosive methane gas li	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion.	Monitoring	groundwater and surface wa
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring data Leachate monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive meth Certification	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface wa analytical values, NC 2L groundwater stan e cause and significance of any concentrat es exceeding an explosive methane gas limane gas limits.	2015 Assessment M Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It include	Monitoring	groundwater and surface wa Jid Waste GWPS and litoring points, dates, sample
rickhaven No. 2 Mine ract "A" Environmental Status: (Check Initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring of Leachate monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value walues and explosive mether Certification To the best of my knowledge, Furthermore, I have attached of	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface wa analytical values, NC 2L groundwater stan cause and significance of any concentrat es exceeding an explosive methane gas limits. the information reported and statement complete notification of any sampling of	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It include ts made on this data values meeting or exc	Monitoring	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and corre
rickhaven No. 2 Mine ract "A" Environmental Status: (Check Initial/Background Monitor Fype of data submitted: (Check Groundwater monitoring of Groundwater monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value walues and explosive mether Certification To the best of my knowledge, Furthermore, I have attached of evels, and a preliminary analysis	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface wa analytical values, NC 2L groundwater stan e cause and significance of any concentrat es exceeding an explosive methane gas limits. the information reported and statement complete notification of any sampling version of any sa	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It include ts made on this data values meeting or exc ncentrations exceedin	Monitoring	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and corre r standards or explosive g dards. I am aware that the
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Coundwater monitoring data Surface water monitoring data Surface water monitoring Notification attached? No. No groundwater or surface water monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive mether Yes, a notification of	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface wa analytical values, NC 2L groundwater stan e cause and significance of any concentrat es exceeding an explosive methane gas limits. the information reported and statemer complete notification of any sampling weis is of the cause and significance of co king any false statement, representation	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ the made on this data values meeting or exc ncentrations exceedin n, or certification inclu	Monitoring itoring data data (specify) d. It includes a list of ter standard or NC So des the methane mor submittal and attac eeding groundwater g groundwater stan ding the possibility	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and corre r standards or explosive g dards. I am aware that the
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring condwater monitoring data Surface water monitoring data Surface water monitoring Notification attached? No. No groundwater or su X Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive meth Certification Fo the best of my knowledge, Furthermore, I have attached conducted a preliminary analysis are significant penalties for mal Mark Filardi, L.G.	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater or surface water standards were exceeded. es exceeding a groundwater	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ its made on this data values meeting or exc ncentrations exceedin n, or certification inclu	Monitoring	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and correct r standards or explosive g dards. I am aware that the
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring condwater monitoring data Surface water monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive meth Certification To the best of my knowledge, Furthermore, I have attached conducts of males are significant penalties for males Mark Filardi, L.G.	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. analytical values, NC 2L groundwater stan a cause and significance of any concentrat as exceeding an explosive methane gas limits. the information reported and statement complete notification of any sampling values sis of the cause and significance of co king any false statement, representatio Senior Geologist Title	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ tts made on this data values meeting or exc ncentrations exceedin n, or certification inclu 704-336 (Area Co	Monitoring itoring data data (specify) d. It includes a list of ter standard or NC So des the methane mor submittal and attac eeding groundwater g groundwater stan ding the possibility	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and corre r standards or explosive g dards. I am aware that the of a fine and imprisonment
rickhaven No. 2 Mine ract "A" Environmental Status: (Check i Initial/Background Monitor Type of data submitted: (Check Groundwater monitoring c Groundwater monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive meth Certification To the best of my knowledge, Furthermore, I have attached c evels, and a preliminary analysis are significant penalties for mai Mark Filardi, L.G.	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface was analytical values, NC 2L groundwater stan cause and significance of any concentrat es exceeding an explosive methane gas li- hane gas limits. the information reported and statemer complete notification of any sampling v sis of the cause and significance of co king any false statement, representatio Senior Geologist Title	2015 Assessment M Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ the made on this data values meeting or exceedin n, or certification inclu 704-334 (Area Co 12/9/2019	Monitoring	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and correct r standards or explosive g dards. I am aware that the of a fine and imprisonment
rickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring condwater monitoring data Surface water monitoring data Surface water monitoring Notification attached? No. No groundwater or su Yes, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive meth Certification To the best of my knowledge, Furthermore, I have attached conducts of males are significant penalties for males Mark Filardi, L.G.	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface was analytical values, NC 2L groundwater stan cause and significance of any concentrat es exceeding an explosive methane gas li- hane gas limits. the information reported and statemer complete notification of any sampling v sis of the cause and significance of co king any false statement, representatio Senior Geologist Title	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ tts made on this data values meeting or exc ncentrations exceedin n, or certification inclu 704-336 (Area Co	Monitoring itoring data data (specify) d. It includes a list of ter standard or NC So des the methane mor submittal and attac eeding groundwater stan ding the possibility 8-6700 de) Telephone Number Affix NC 1000000	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and correct r standards or explosive g dards. I am aware that the of a fine and imprisonment
Arickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring data Surface water monitoring data Surface water monitoring data Surface water monitoring of Ves, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive method the best of my knowledge, Furthermore, I have attached of evels, and a preliminary analysis are significant penalties for main fark Filardi, L.G. acility Representative Name (Print)	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) data from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface was analytical values, NC 2L groundwater stan cause and significance of any concentrat es exceeding an explosive methane gas li- hane gas limits. the information reported and statemer complete notification of any sampling v sis of the cause and significance of co king any false statement, representatio Senior Geologist Title	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ the made on this data walues meeting or exc ncentrations exceedin n, or certification inclu 704-333 (Area Co 12/9/2019 Date	Monitoring itoring data data (specify) d. It includes a list of ter standard or NC So des the methane mor submittal and attac eeding groundwater stan ding the possibility 8-6700 de) Telephone Number Affix NC 1000000	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and correct standards or explosive gi dards. I am aware that the of a fine and imprisonment SEAL
Arickhaven No. 2 Mine Fract "A" Environmental Status: (Check in Initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring of Leachate monitoring data Surface water monitoring Notification attached? No. No groundwater or su Surface water monitoring points, dates, a preliminary analysis of the Yes, a notification of value walues and explosive meth Certification To the best of my knowledge, Furthermore, I have attached cevels, and a preliminary analysis are significant penalties for malwark Filardi, L.G. acility Representative Name (Print) DR Engineering, Inc. of the Caro	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) Jata from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface water analytical values, NC 2L groundwater stan to cause and significance of any concentrat es exceeding an explosive methane gas limits. the information reported and statemer sis of the cause and significance of co king any false statement, representation Senior Geologist Title	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ its made on this data values meeting or exc ncentrations exceedin n, or certification inclu 704-336 (Area Co 12/9/2019 Date	Monitoring itoring data data (specify) d. It includes a list of ter standard or NC So des the methane mor submittal and attac eeding groundwater stan ding the possibility 8-6700 de) Telephone Number Affix NC 1000000	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and correct r standards or explosive gi dards. I am aware that the of a fine and imprisonment
Arickhaven No. 2 Mine ract "A" Environmental Status: (Check initial/Background Monitor Type of data submitted: (Check Groundwater monitoring of Groundwater monitoring data Surface water monitoring data Surface water monitoring data Surface water monitoring of Ves, a notification of value monitoring points, dates, a preliminary analysis of the Yes, a notification of value values and explosive method the best of my knowledge, Furthermore, I have attached of evels, and a preliminary analysis are significant penalties for main fark Filardi, L.G. acility Representative Name (Print)	Chatham County Moncure, NC all that apply) ing X Detection Monitoring all that apply) Jata from monitoring wells data from private water supply wells data frace water standards were exceeded. es exceeding a groundwater or surface water analytical values, NC 2L groundwater stan to cause and significance of any concentrat es exceeding an explosive methane gas limits. the information reported and statemer sis of the cause and significance of co king any false statement, representation Senior Geologist Title	2015 Methane gas mon Corrective action Other(specify) ater standard is attached dard, NC 2B surface wa ion. mit is attached. It includ its made on this data values meeting or exc ncentrations exceedin n, or certification inclu 704-336 (Area Co 12/9/2019 Date	Monitoring itoring data data (specify) d. It includes a list of ter standard or NC So des the methane mor submittal and attac eeding groundwater stan ding the possibility 8-6700 de) Telephone Number Affix NC 1000000	groundwater and surface wa blid Waste GWPS and hitoring points, dates, sample hments are true and correct standards or explosive gi dards. I am aware that the of a fine and imprisonment SEAL

2019 Second Semi-Annual Detection Monitoring Report

Brickhaven No.2 Mine Tract "A" Structural Fill

Charah Solutions, Inc.

Moncure, Chatham County, North Carolina December 10, 2019

HDR Engineering, Inc. of the Carolinas 440 S Church Street, Suite 1000, Charlotte, NC 28202-2075 704.338.6700 NC License F0116

Table of Contents

1	Intro	oduction	. 1
	1.1	Purpose	. 1
	1.2	Regulatory Compliance	. 1
	1.3	Site Location and Operation	. 2
	1.4	Groundwater Monitoring System	. 2
	1.5	Site Topography and Geographical Setting	. 5
	1.6	Geologic and Hydrogeologic Setting	. 5
	1.6.	.1 Regional Geology	. 5
	1.6.2	.2 Site Geology	. 5
	1.6.3	.3 Regional Hydrogeology	. 7
2	Gro	oundwater Flow Characteristics	. 8
	2.1.		
	2.1.	.2 Hydraulic Conductivity	10
	2.1.3		
	2.1.4	•	
3	Sam	mpling Procedures	12
Ũ	3.1	Groundwater Sampling Procedures	
	3.2	Surface Water Sampling Procedures	
	3.3	Leachate Sampling Procedures	
4	Wat	iter Quality	
т	4.1	Background Site Conditions	
	4.2	Groundwater Analytical Results	
	4.3	Surface Water Analytical Results	
	4.4	Leachate Analytical Results	
5		tistics	
5	5.1	Methodology	
	5.1		
	5.1.	5	
	5.1.		
	5.1.4		
	5.1.		
	5.2	Evaluation for SSIs over Background	
	5.3	Statistical Summary	
c		-	
6		mmary and Conclusions	
	6.1	Groundwater	
	6.2 6.3	Surface Water	
	6.3 6.4	Leachate Statistical Analysis	
_		-	
7		commendations	
8	Refe	ferences	25

Table 1: Well Construction, Survey, and Groundwater Elevations	4
Table 2: Historic Groundwater Elevations	
Table 3: Hydraulic Conductivity	
Table 4: Horizontal Hydraulic Gradients (i, dh/dl)	
Table 5: Historical Seepage Velocity	11
Table 6: Analytical Results - July 2019	

Figures

- Figure 1: Regional Site Location Map
- Figure 2: Regional USGS Topographic Map
- Figure 3: Sample Location Map
- Figure 4: Potentiometric Surface Map July 2019

Appendices

- Appendix A Field Data Sheets
- Appendix B Concentration vs. Time Plots
- Appendix C Laboratory Reports, Chains of Custody, & Quality Control Data
- Appendix D Electronic Data Deliverables (CD-ROM only)
- Appendix E Statistical Analysis Memo

F)5

List of Select Acronyms

µg/Lmicrograms per literCAMANorth Carolina Coal Ash Management Act of 2014CCPCoal Combustion ProductsDECDuke Energy CarolinasDEPDuke Energy ProgressDODissolved OxygenEDDElectronic Data DeliverableEPAUnited States Environmental Protection AgencyIDInner Diameter
CCPCoal Combustion ProductsDECDuke Energy CarolinasDEPDuke Energy ProgressDODissolved OxygenEDDElectronic Data DeliverableEPAUnited States Environmental Protection AgencyIDInner Diameter
DEPDuke Energy ProgressDODissolved OxygenEDDElectronic Data DeliverableEPAUnited States Environmental Protection AgencyIDInner Diameter
DEPDuke Energy ProgressDODissolved OxygenEDDElectronic Data DeliverableEPAUnited States Environmental Protection AgencyIDInner Diameter
DODissolved OxygenEDDElectronic Data DeliverableEPAUnited States Environmental Protection AgencyIDInner Diameter
EPAUnited States Environmental Protection AgencyIDInner Diameter
ID Inner Diameter
KM Kaplan-Meier Method
NCDENR North Carolina Department of Environment and Natural Resources
NCDEQ North Carolina Department of Environmental Quality
NCGPS North Carolina groundwater protection standard
N Standard Penetration Resistance
ND Non-detects
NPPL Non-parametric Prediction Limit
NTU Nephelometric turbidity units
MCL Maximum Contaminant Levels
MDL Method Detection Limit
MLE Maximum Likelihood Estimate
msl mean sea level
OD Outer Diameter
ORP Oxidation-Reduction Potential
PL Predictive Limit
PPL Parametric Prediction Limit
RCRA Resource Conservation and Recovery Act
ROS Regression on Order Statistics
SSI Statistically Significant Increase
UPL Upper Prediction Limit
USCS Unified Soil Classification System

FX

1 Introduction

1.1 Purpose

The purpose of this *2019 Second Semi-Annual Detection Monitoring Report* is to summarize semi-annual detection monitoring at the Brickhaven No.2 Mine Tract "A" Structural Fill site in Moncure, Chatham County, North Carolina. The report includes results from the July 8-12, 2019 semi-annual detection monitoring event, as well as the statistical results calculated for this monitoring event.

The next semi-annual monitoring event will take place in January 2020.

1.2 Regulatory Compliance

Operating under Facility Permit #1910-STRUT-2015, Charah is required to monitor groundwater and surface water quality at designated locations. Per the Water Quality Monitoring Plan (Buxton, 2015a), groundwater samples are collected from 11 monitoring wells (MW-1 through MW-8, BG-1, and BG-2) and two surface water locations (SW-1 and SW-2). Groundwater samples are analyzed for constituents listed in North Carolina Department of Environmental Quality (NCDEQ) Solid Waste Appendix I and II, 40 CFR 257 Appendix III, and 40 CFR 257 Appendix IV. If sampling results indicate impacts to groundwater or surface water, Charah must notify NCDEQ within 14 days. If no impacts are observed, Charah must submit a report of the sampling results to NCDEQ with 120 days of the sampling event.

Groundwater monitoring and sampling at the site is governed by the following:

- North Carolina Coal Ash Management Act (CAMA) of 2014 (Senate Bill 729).
- Water Quality Monitoring Plan, Brickhaven No.2 Mine Tract "A" Structural Fill, approved March 2015 (Buxton, 2015a).
- North Carolina Department of Environment and Natural Resources (NCDENR)¹ Permit No. 1910-STRUC-2015, issued June 5, 2015.
- NCDENR Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling, April 2008 including Groundwater Rules .1600.
- NCDENR Division of Water Management memorandum concerning electronic document submittal for routine groundwater and surface water monitoring, November 5, 2014.
- U.S. Environmental Protection Agency (EPA) Region I, *Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells*, January 19, 2010.

Groundwater monitoring and sampling at the site is also conducted in general accordance with the U.S. EPA's "Disposal of Coal Combustion Residuals from Electric Utilities" rule (CCR Rule).

¹ On September 18, 2015, the North Carolina Department of Environment and Natural Resources (NCDENR) became the North Carolina Department of Environmental Quality (NCDEQ). Both naming conventions are used in this report, as appropriate.

1.3 Site Location and Operation

The site is located in Chatham County, approximately four miles southeast of Moncure, North Carolina (**Figure 1**). The owner of the site is Green Meadow, LLC (Green Meadow). Charah Solutions, Inc. (Charah) is responsible for the operation and maintenance of the site. The mine property is approximately 301 acres in total; of which 145 acres is permitted for structural fill placement of coal combustion products (CCP).

The property located within the structural fill area was previously owned by General Shale Brick, Inc., which operated the site and an adjacent property as a clay mine beginning in 1985 for their off-site brick manufacturing facility. Mined clay was stockpiled and then transported approximately 3.5 miles south to Brickhaven, North Carolina for brick manufacturing.

The area immediately surrounding the site primarily consists of rural residential (approximately 2,500 feet east, 1,000 feet southeast, and 1,000 feet southwest), commercial, industrial, wooded and agricultural property. According to information obtained from the Chatham County GIS website (October 2015), municipal water is available to the surrounding area.

Charah began CCP placement in the first composite liner containment system (Cell 1, Sub Cell 1A) on October 23, 2015. CCP placement has occurred in Cell 1, Cell 2, Cell 6A and Cell 6B. Charah has placed just over 7.3 million tons of CCP material in the structural fill at the time of this report. CCP materials (including fly ash, bottom ash, boiler slag, and/or flue gas desulfurization materials) were initially brought to the site by truck through October 2015 until transportation was changed to rail in January 2016. The CCP originated at the Duke Energy Carolinas (DEC) Riverbend Steam Station and Duke Energy Progress (DEP) L.V. Sutton Energy Complex (Sutton Plant) sites.

Leachate (i.e., product generated from the liquids present in the fill at the time of placement and/or stormwater that infiltrates the fill) is managed on-site through the collection, storage, and disposal of the resultant liquid. Green Meadow has approved pump and haul permits to dispose of leachate at the City of Sanford's Big Buffalo Creek Wastewater Treatment Plant and the Town of Spring Lake's South Harnett Regional Wastewater Treatment Plant.

1.4 Groundwater Monitoring System

The groundwater monitoring system was designed to provide background groundwater quality data prior to the placement of CCP in the structural fill and early detection of potential CCP constituents subsequent to CCP placement to be protective of human health and the environment. The groundwater monitoring system is comprised of ten (10) wells: eight wells are located downgradient/cross-gradient (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7R and MW-8) and two wells are considered to represent background groundwater quality (BG-1 and BG-2). Well construction details are presented in **Table 1**.

Background monitoring well BG-1 was installed in July of 2015 near the entrance of the site along Moncure-Flatwood Road. This location was selected to provide groundwater quality data in an area of the site presumed to not be impacted by historic or current usage of the site. Upon statistical analysis of groundwater quality data collected pre- and post-CCP placement,

concentrations of target analytes in well BG-1 appear to be anonymously low when compared to pre-CCP conditions elsewhere on-site. With approval from NCDEQ, Charah installed a second background well (BG-2) southwest of the structural fill in December 2018 to evaluate spatial variability of inorganic concentrations across the site.

Well MW-7R was installed in April of 2017 as a replacement for monitoring well MW-7, as documented and approved in the May 25, 2017 memorandum to the NCDEQ Solid Waste Section. Well MW-7 will temporarily remain onsite for water level gauging purposes only.

-)	2

Well ID	Northing	Easting	Pad Elev. (ft.)	TOC Elev. (ft.)	TD (ft. BGS)	TD (ft. BTOC)	Screen Length (ft.)	Screened Interval (ft. BGS)	DTW (ft. BTOC)	GW Elevation (ft.)	Lithologic Unit
BG-1	670898.50	1996348.25	225.64	228.19	40.50	43.05	15	26-41	9.56	218.63	Layered Rock/PWR*
BG-2	669278.99	1990476.10	191.41	194.23	23.29	26.11	10	13-23	12.91	181.32	Layered Rock/PWR*
MW-1	674737.98	1993417.69	277.28	280.08	72.50	75.30	15	57-72	57.64	222.44	Layered Rock/PWR*
MW-2	673677.07	1994537.54	229.27	231.76	47.66	50.15	15	30-45	37.31	194.45	Layered Rock/PWR*
MW-3	672474.63	1994834.76	220.00	222.56	40.80	43.36	15	25-40	25.70	196.86	PWR
MW-4	671326.48	1994974.40	214.49	217.13	22.70	25.34	10	13-23	12.13	205.00	Residuum/PWR
MW-5	671081.19	1993779.03	242.72	244.86	44.00	46.14	10	34-44	20.75	224.11	PWR
MW-6	671267.60	1992793.34	228.63	231.10	27.00	29.47	15	12-27	7.00	223.951	Residuum/PWR
MW-7	672306.28	1992642.35	229.53	231.71	15.00	17.18	10	5-15	15.89	215.82	Residuum/PWR
MW-7R	672221.96	1992702.98	239.99	242.22	36.00	39.94	10	26-36	20.48	219.46	Residuum/PWR
MW-8	673304.83	1992200.37	233.41	236.47	46.00	49.06	15	31-46	37.56	198.91	PWR

Table 1: Well Construction, Survey, and Groundwater Elevations

Notes:

1. Top-of-casing, ground surface elevations and horizontal locations at MW-4 (PZM-1), MW-5 (PZM-22) and MW-7 (PZM-27) surveyed by Lawrence Surveying of Monroe, NC.

2. Top-of-casing, ground surface elevations and horizontal locations at BG-1, MW-1, MW-3, MW-6, MW-8 and MW-7R surveyed by McAdams of Durham, NC.

3. Top-of-casing, ground surface elevations and horizontal location at monitoring well MW-2 surveyed by McAdams of Durham, NC.

4. Top-of-casing, ground surface elevations and horizontal location at monitoring well BG-2 surveyed by McAdams of Durham, NC.

5. TD=total depth; BGS=below ground surface; TOC=top of casing; DTW = Depth-to-Water; BTOC = below top-of-casing; GW = groundwater.

6. Depth to water measurements obtained on July 8, 2019, to the nearest 0.01 foot with a water level meter.

7. Well locations and elevations based on NAD 83 horizontal datum and NGVD88 vertical datum.

8. * = interpreted lithologic unit based on relative drilling hardness and geologic judgment during well installation.

1.5 Site Topography and Geographical Setting

Based on review of the 1993 USGS topographic quadrangle (**Figure 2**) and GIS mapping, the topography of the site and immediately surrounding area can be characterized by moderately rolling hills, which are dissected by dendritic creeks. Prior to mining by General Shale, a topographic ridge was present within the site, extending from the northwestern corner of the present-day structural fill toward the southeast. Thus, historic drainage was to the north/northwest/west and to the northeast/east/southeast away from the ridge, as shown on **Figure 3**.

1.6 Geologic and Hydrogeologic Setting

1.6.1 Regional Geology

The site is located within the Piedmont physiographical province of North Carolina, which is a northeast-southwest trending region extending from New York to Alabama.

According to the 1985 North Carolina Geologic Map prepared by the North Carolina Geological Survey, the site is located in the Triassic Basin Belt of the Piedmont physiographic province. The basement rocks of the Triassic Basin Belt include conglomerate, sandstone, mudstone, limestone, coal, and shale. The majority of the subject property is located within the Sanford Formation which contains conglomerate, fanglomerate, sandstone, and mudstone. The far western portion of the site is located in the Cummock Formation which contains sandstone, mudstone, gray and black coal, and carbonaceous shale. The Triassic Basin is bounded by felsic metavolcanic rock within the Carolina Slate Belt approximately 6.5 miles to the northwest; and is contacted by metamorphosed granite and biotite gneiss and schist of the Raleigh Belt along a normal fault approximately 2.5 miles to the southeast. The Triassic Basin formations have been intruded by north northwest-south southeast trending igneous diabase dikes during the Jurassic Period (~144 to 208 Ma), and contain northeast-southwest trending normal faults. However, none of these faults were indicated to exist at the subject site on the 1985 geologic map (NCDENR, 1985).

In the Piedmont, the bedrock is typically overlain by a mantle of weathered rock (residuum/saprolite), which has an average thickness of approximately 25 feet. The residuum/saprolite consists of varying amounts of unconsolidated clays, silts, and sands, with lesser amounts of rock fragments. Due to the range of the parent rock composition and the variable susceptibility to weathering of each rock type, the residuum/saprolite range widely in color, texture, and thickness. Generally, the residuum/saprolite is thickest near inter-stream divides (ridges) and thins toward stream beds. In profile, the residuum/saprolite normally grades from clayey soils near the land surface to sandier, partially weathered rock above competent bedrock (Buxton, 2014).

1.6.2 Site Geology

The geology of the site can be subdivided into six units which include fill, flood plain, soil horizon, residuum, partially weathered rock, and layered rock. These units generally grade downward from a soil horizon, to residuum, to partially weathered rock and finally layered rock. Fill materials were limited to the road bed and berm located around the east and west sides of

MW-4. Flood plain sediments were only identified at MW-4 on the southeast corner of the site. The following summary of site-specific units is based on boring logs originally included in the *Design Hydrogeologic Report* (Buxton, March 2016).

FILL

Fill materials were primarily identified in the road bed and berm located around the east and west sides near MW-4 and generally consisted of mottled reddish yellow, orange, brown, and light gray sandy silty clay with quartz and brick gravel.

FLOOD PLAIN

Flood plain sediments were only located adjacent to MW-4 on the southeast corner of the site. Sediments were associated with a former adjacent intermittent tributary creek and can be generally characterized as mottled light gray fine sandy silty clay. The flood plain sediments were approximately 5 feet thick in this area and had been deposited above residuum. Based on geotechnical laboratory data, the flood plain sediments were identified as lean clay (CL) under the Unified Soil Classification System (USCS).

SOIL HORIZON

The soil horizon is characterized as mottled yellowish, brown, orange, and red silty clay and clayey silt. Root structures were common. The soil horizon at the site is formed from the continued weathering and biologic reworking of residuum, and ranges from 2 to 15 feet in thickness, when present. Based on geotechnical laboratory data, the soil horizon consisted of clayey sand (SC), elastic silt (MH), and lean clay (CL) and had a hydraulic conductivity of 2.86 x 10⁻⁷ cm/sec.

RESIDUUM

Residuum is characterized as mottled (black and gray) red and reddish brown sandy silty clay with infrequent quartz gravel and cobbles. Residuum is characteristically fissile, often breaking in horizontal sheets. Residuum generally retains the remnant texture, structure and mineral content of the rock from which it was formed, and ranges from 5 to 15 feet in thickness. Residuum has a Standard Penetration Resistance (N) of less than 100 blows per foot. Based on geotechnical laboratory data, the residuum consisted of lean clay (CL) with hydraulic conductivity ranging from 7.69 x 10⁻⁸ cm/sec to 3.69 x 10⁻⁹ cm/sec.

PARTIALLY WEATHERED ROCK

Partially weathered rock is characterized as mottled (light green and purple) brown, reddish gray, and weak red silty clay and weathered mudstone, which are often fissile. Partially weathered rock generally retains the remnant texture, structure, and mineral content of the rock from which it was formed, and ranges from 5 to 40 feet in thickness. Partially weathered rock has an N-value of 100 blows per foot or greater and can generally be drilled with standard hollow-stem auger drilling technology. Based on geotechnical laboratory data, partially weathered rock consisted of lean clay (CL). Hydraulic conductivity ranged from 2.433 x 10^{-4} cm/sec to 7.154 x 10^{-8} cm/sec, according to slug or recovery test data (for wells screened solely in partially weathered rock).

LAYERED ROCK

Based on rock coring activities conducted near MW-7/MW-7R and visual inspection of the layered rock exposed on the north side of the MW-4 area, layered rock at the site is primarily composed of reddish to light tan gray mudstone, cross-bedded muddy sandstone, and muddy sandy conglomerate (rounded quartz gravel and cobbles). Layered rock generally occurs as horizontally oriented and relatively thin intermittent layers (especially within the upper 15 feet of contacting layered rock) across the site, based on rock coring and the horizontal fissile nature of residuum and partially weathered rock. Layered rock contained horizontal to near vertical fracturing. Large fractures, oriented approximately N 40° to 60° E at 70° northwest, were observed in weathered mudstone to the immediate northeast near MW-8. Rock Quality Designation (RQD) values for the MW-8 area rock core (21-inch recovery) were poor (47.6%). The occurrence of layered rock at the site was generally defined by auger refusal.

1.6.3 Regional Hydrogeology

The occurrence and movement of groundwater in the Piedmont physiographic province are within two separate but interconnected water-bearing zones that typically comprise one aquifer. A shallow water-bearing zone typically occurs within the residuum/saprolite and a deeper zone within the underlying bedrock.

Groundwater in the residuum/saprolite zone occurs in the interstitial pore spaces between the individual sediment grains. Groundwater in this zone generally flows from topographic highs to topographic lows. The occurrence and movement of groundwater in the underlying bedrock zone are controlled by joints and fractures within the bedrock. Groundwater within this deeper zone may occur under confined or semi-confined conditions, depending on the extent of fracturing at the saprolite/bedrock interface. Deeper groundwater movement is typically controlled by the distribution of openings in the bedrock and can be variable.

2 Groundwater Flow Characteristics

On July 8, 2019, groundwater depth was measured in each well. Depths-to-water ranged from 7.00 feet (MW-6) to 57.64 feet below top of casing (MW-1). Groundwater elevations ranged from 181.32 feet in well BG-2 to 224.11 feet in well MW-5 (**Table 1**). Historic groundwater elevations are shown in **Table 2**. Monitoring well locations are shown on **Figure 3**.

Table 2: Historic Groundwater Elevations

	TOC						Groun	dwater Ele	vation						
Well ID	TOC Elev.	Oct-15	Nov-15	Jan-16	Feb-16	Apr 16	Jun-16	Jul-16	Jan-17	Apr 17	Jul-17	Jan-18	Jul-18	Jan-19	Jul-19
BG-1	228.19	215.70	216.83	218.14	218.94	Apr-16 218.46	218.46	218.74	217.08	Apr-17 216.61	216.76	211.96	215.37	218.50	218.63
BG-2	194.23	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	183.28	181.32
MW-1	280.08	220.18	220.55	222.03	222.76	221.83	221.83	221.51	220.58	219.72	219.19	217.61	218.03	220.52	222.44
MW-2	229.97	190.20	192.90	197.19	198.82	201.17	201.17	204.62	205.42	201.63	201.58	186.33	195.65	195.61	194.45
MW-3	222.56	208.46	210.29	210.64	212.31	212.36	212.36	204.81	202.35	202.36	203.91	199.53	194.38	199.03	196.86
MW-4	217.13	206.37	206.83	206.98	211.36	208.34	208.34	205.66	203.67	203.30	204.10	202.16	203.43	204.16	205.00
MW-5	244.86	229.66	230.11	230.16	228.69	220.06	220.06	222.96	203.32	221.53	222.60	218.86	221.93	223.86	224.11
MW-6	231.1	223.99	223.97	224.53	224.75	224.13	224.13	224.07	224.54	223.31	223.58	222.14	222.21	224.89	223.95
MW-7	231.71	222.36	222.53	216.11	215.31	215.66	215.65	216.21	215.42	215.59	216.09	215.03	215.97	215.40	215.82
MW-7R	242.22	NG	NG	NG	NG	NG	NG	NG	NG	NG	220.92	217.54	220.30	219.82	219.46
MW-8	236.47	200.58	201.35	200.60	200.55	199.49	199.49	199.82	199.31	199.11	198.98	198.75	198.45	201.85	198.91

Note:

1. NG – Not Gauged; MW-7R installed April 2017 and BG-2 installed December 2018.

FS

2.1.1 Groundwater Flow Direction

Groundwater at the site flows away from the historic north to south trending topographic ridge that was present prior to mine development by General Shale (**Figure 4**). Groundwater elevations and general flow directions remain consistent with previous background and detection monitoring events.

2.1.2 Hydraulic Conductivity

Horizontal hydraulic conductivity of aquifer materials adjacent to the well screen were estimated through in-situ slug testing during the *Design Hydrogeologic Report* (Buxton, 2016). Results are provided in **Table 3**.

Well ID	Screen Length (ft)	Screened Interval (ft)	Estimated Effective Porosity (%)	Hydraulic Conductivity (K, cm/sec)	Lithologic Unit
BG-1	15	26-41	0.075	7.76E-05	Layered Rock/PWR*
BG-2	10	13-23	NA	NA	Layered Rock/PWR*
MW-1	15	57-72	0.075	4.11E-04	Layered Rock/PWR*
MW-2	15	30-45	0.05	3.41E-06	Layered Rock/PWR*
MW-3	15	25-40	0.05	4.08E-07	PWR
MW-4	10	13-23	0.14	1.41E-04	Residuum/PWR
MW-5	10	34-44	0.075	8.01E-06	PWR
MW-6	15	12-27	0.15	1.10E-04	Residuum/PWR
MW-7	10	5-15	0.15	1.26E-06	Residuum/PWR
MW-8	15	26-36	0.075	1.29E-04	PWR

Table 3: Hydraulic Conductivity

Notes:

1. Hydraulic conductivity values determined by Buxton Environmental, Inc. on September 10, 2015, by conducting rising head slug tests; and solved utilizing the Bouwer-Rice (unconfined slug test) solution with AQTESOLV for Windows Version 4.50 software by Hydrosolv, Inc. (1996-2007).

2. Effective porosity values from geotechnical testing and the literature (McWhorter and Sunada, 1977; Sinhal and Gupta, 2010) where geotechnical data was not available.

3. MW-7R and BG-2 were installed after the Hydrogeologic Report was submitted; MW-7 was utilized for evaluation in lieu of data from MW-7R.

4. * = interpreted lithologic unit based on relative drilling hardness during well installation.

5. NA=Not Analyzed

2.1.3 Horizontal Hydraulic Gradients

Horizontal hydraulic gradient is calculated by taking the difference in hydraulic head over the length of the flow path between two wells of similar construction and (generally) perpendicular to flow. Given that the historic ridge runs approximately north-south through the structural fill and that no monitoring wells have been installed through the liner system of the fill, horizontal hydraulic gradient was calculated between wells MW-5 and MW-4 and MW-1 to MW-2, recognizing that MW-1 to MW-2 is not truly perpendicular to flow, as shown on **Figure 4**. Hydraulic gradients at the site during this sampling event are depicted in **Table 4**.

Table 4: Horizontal Hydraulic Gradient	s (i, dh/dl)
--	--------------

Upgradient Well	Downgradient Well	Upgradient Groundwater Elevation (ft)	Downgradient Groundwater Elevation (ft)	Linear Flow Distance (ft)	Hydraulic Gradient
MW-1	MW-2	222.44	194.45	1,543	0.018
MW-5	MW-4	224.11	205.00	1,220	0.016

Notes:

1. Horizontal hydraulic gradients calculated by dividing the difference in hydraulic head between a well pair by the length of the flow path between the well pair. (*i*= dh/dl)

2. All well pairs assumed to be screened in same surficial aquifer unit

3. Horizontal flow path distance calculated by

 $\sqrt{(Easting_1 - Easting_2)^2 + (Northing_1 - Northing_2)^2}$

4. Top-of-casing elevation and horizontal location for well MW-5 surveyed by Lawrence Surveying of Monroe, NC.

5. Top-of-casing elevations and horizontal locations for wells MW-1 and MW-3 surveyed by McAdams of Durham, NC.

6. Top-of-casing elevation and horizontal location for well MW-2 surveyed by Gregory C. Bewley.

7. Groundwater elevations calculated for depth-to-water measurements recorded on July 8, 2019.

2.1.4 Groundwater Flow Velocity

The average linear velocity, or seepage velocity, of groundwater between wells at the site was calculated using Darcy's Law, as follows:

$$V_S = \frac{Ki}{P_e}$$

Where:

V_s = seepage velocity K = horizontal hydraulic conductivity i = horizontal hydraulic gradient P_e = effective porosity

Seepage velocities for groundwater were calculated using horizontal hydraulic gradients, as referenced above, average horizontal hydraulic conductivity and estimated effective porosity values from geotechnical testing and from the literature where geotechnical data was not available (Buxton, 2014; Sinhal and Gupta, 2010).

Seepage velocity varies on a well-by-well basis and was calculated between the MW-1/MW-2 and MW-5/MW-4 well pairs, representing the two well pairs that are roughly perpendicular to the direction of groundwater flow. Seepage velocity was calculated at 11.2 feet per year (between MW-1 and MW-2) and 5.1 feet per year (between MW-5 and MW-4) for this sampling event. Historical seepage velocities are shown in **Table 5**.

		Seepage Velocity (ft/yr)											
Well Pair	2015	2016	2017	2017	2018	2018	2019	2019					
wen Pair	Dec	May	Jan	Jul	Jan	Jul	Jan	Jul					
MW-1/MW-2	62.8	6.78	6.1	7.1	12.5	9.0	10.0	11.2					
MW-4/MW-5	15.6	4.59	0.1	4.9	4.4	4.9	5.2	5.1					

Table 5: Historical Seepage Velocity

3 Sampling Procedures

3.1 Groundwater Sampling Procedures

HDR collected groundwater samples from the monitoring well network between July 8 and 11, 2019. Purging was conducted via low-flow methods and was considered complete when the water table and field parameters had stabilized in accordance with the targets specified below.

- Turbidity (10% for values greater than 5 NTU (if three turbidity values are less than 5 NTU, the values are considered stabilized)
- DO (10% for values greater than 0.5 mg/L, if three DO values are less than 0.5 mg/L, the values are considered stabilized)
- Specific conductance (3%)
- Temperature (3%)
- pH (± 0.1 unit)
- ORP (± 10 millivolts)

In cases where water level in the well would not stabilize, the well was pumped dry and groundwater samples were collected with disposable bailers upon recovery of adequate volume for sampling. Field data sheets are provided in **Appendix A**.

All non-disposable equipment was decontaminated after each use by washing in a Liqunox® detergent solution followed by a tap-water rinse. Purge water was discharged to the ground surface adjacent to each well.

Samples were shipped under Chain of Custody (COC) procedures to Pace Analytical Services, LLC (Pace) for analysis. Sample handling and custody were performed according to the EPA Guidance for Field Samplers.

3.2 Surface Water Sampling Procedures

Surface water samples were collected from two locations outside of the structural fill boundary to evaluate potential groundwater to surface water interaction. Surface water sample SW-1 was collected approximately 500 feet south of the MW-4 outside of the property boundary along an unnamed tributary of Gulf Creek. Surface water sample SW-2 was collected south and adjacent to the rail spur west of the structural fill along an unnamed tributary of Shaddox Creek. Prior to sample collection, field parameters (temperature, specific conductance, DO, pH, turbidity, and ORP) were measured with a water quality meter and recorded on field data sheets (**Appendix A**). Surface water sampling locations are shown on **Figure 3**.

3.3 Leachate Sampling Procedures

One leachate sample (Leachate) was collected from the on-site storage holding tanks. The leachate sample is used to evaluate potential on-site leachate impacts. The leachate sample location is shown on **Figures 3**

FJS

4 Water Quality

Groundwater samples were collected from 8 of 11 monitoring wells (MW-1, MW-4 through MW-8, BG-1, and BG-2) and two surface water locations (SW-1 and SW-2). Groundwater samples were not collected from MW-2 and MW-3 due to the wells being purged dry and not recharging. MW-7 is no longer sampled since it was replaced by MW-7R. Groundwater samples are analyzed for constituents listed in NCDEQ Solid Waste Appendix I and II, 40 CFR 257 Appendix III, and 40 CFR 257 Appendix IV.

4.1 Background Site Conditions

Two groundwater sampling events were conducted prior to CCP placement (August and October 2015). The background sampling events consisted of sample collection and analysis from nine monitoring wells (MW-1 through MW-8 and BG-1) and two surface water sample locations (SW-1 and SW-2).

During these initial background monitoring events, chloride, pH, TDS, and vanadium were detected at concentrations that exceeded their North Carolina 2L Groundwater Protection Standards (2L Standard) or Interim Maximum Allowable Concentration (IMAC) in groundwater samples collected from background monitoring well BG-1. Antimony, barium, chloride, chromium, cobalt, pH, TDS, and vanadium were detected at concentrations that exceeded their respective 2L Standards or IMACs in other monitoring wells prior to ash placement. Additional target analytes were detected in the samples from well BG-1 and other wells; however, these concentrations did not exceed applicable standards.

Copper and cobalt concentrations that exceeded their respective NC Surface Water & Wetland Standards (2B Standards) were reported in surface water samples collected during the initial background monitoring events, prior to CCP placement. Additionally, all EPA Appendix III constituents were detected in the surface water samples collected prior to CCP material placement, but at concentrations below their respective 2B Standards (if applicable).

During the first monitoring event (August 2015), bromodichloromethane and dibromochloromethane were detected at concentrations above their respective 2L Standards in groundwater samples collected from MW-2, MW-3, and MW-7. Volatile organic compounds (VOCs), including trihalomethanes, are not present naturally at the site. These detections are attributed to the use of municipal water during previous well development activities. VOCs were not detected above laboratory method detection limits (MDLs) in any subsequent (2nd through 8th) background sampling events.

A detailed discussion of background groundwater conditions can be found in the *2016 Background Sampling Report* (HDR, 2016b). Additional discussion of the statistical results can be found in **Section 5** of this report for a better understanding of predictive limits for the background well locations (BG-1 and BG-2), as well as interwell interactions.

4.2 Groundwater Analytical Results

Concentrations of the following constituents have exceeded 2L Standards or IMACs in one or more wells: chloride, pH, TDS, antimony, barium, chromium, cobalt, nickel, and vanadium. The antimony MDL ($3.0 \mu g/L$) is greater than the 2L Standard ($1.0 \mu g/L$). Antimony was detected in one sample (MW-7R), in which it exceeded the 2L Standard. EPA Appendix I VOCs were not detected above laboratory method detection limits. Analytical results are presented in **Table 6**. Concentration versus time plots generated for three constituents (barium, chloride, and TDS) with the most frequent detections and/or exceedances are included in **Appendix B**.

The presence of naturally occurring inorganic constituents above regulatory criteria is common in North Carolina due to various geologic conditions. The presence of naturally occurring metals (i.e., weathering of crystalline parent material) is discussed in more detail in the *Initial Background Groundwater & Surface Water Monitoring Event* (Buxton, 2015c). The laboratory report for the current sampling event is provided in **Appendix C**. Electronic data deliverables (EDDs) are provided in **Appendix D**.

Table 6: Analytical Results - July 2019

_		Pre-ash	2L Standard	BTV				Ģ	Groundwa	ter Analys	is					Qu	ality Con	itrol	Surfa	ace Water	Analysis	Leachate Analysis
Analyte	CAS Number	concentration range	/ IMAC	(1Q2019)	BG-1	BG-2	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7R	MW-8	Amb. Blank	Equip. Blank	Trip Blank	DUP (MW-8)	SW-1	SW-2	2B Standard	LEACHATE
EPA APPENDIX III																<u>··</u>	•	· · /				
Boron (µg/l)	7440-42-8	6.01 - 53.10	700	9.26	<2.60	<5.10	<2.60	DRY	DRY	<2.60	<12.80	<2.60	<12.80	<12.80	<2.60	<2.60	NT	<12.80	<12.80	40.5	NE	3,250
Calcium (µg/l)	7440-70-2	16,900 - 185,000	NE	89,600	27,900	111,000	216,000	DRY	DRY	69,400	14,300	37,800	102,000	94,600	<24.20	<24.20	NT	98,000	11,400	35,400	NE	310,000
Chloride (µg/l)	16887-00-6	2,220, - 1,166,000	250,000	355,000	228,000	234,000	855,000	DRY	DRY	467,000	22,300	208,000	275,000	309,000	<0.60	<0.60	NT	312,000	7,800	50,200	250,000	18,300
Fluoride (µg/l)	16984-48-8	<20 - 590	2,000	189	180	<u>190</u>	170	DRY	DRY	340	600	<u>380</u>	120	<50	<50	<50	NT	<50	250	160	1,800	220
pH (standard units)	pН	6.17 - 7.70	6.5-8.5	6.05 - 7.07	6.30	6.93	6.50	DRY	DRY	6.23	6.25	6.15	7.29	7.01	NT	NT	NT	7.01	7.01	7.78	6.0-9.0	7.78
Sulfate (µg/I)	14808-79-8	3,700 - 199,000	250,000	64,700	20,600	<u>102,000</u>	7,200	DRY	DRY	11,200	3,500	25,800	16,800	7,500	<500	<1000	NT	7,500	21,600	47,000	250,000	592,000
Total Dissolved Solids (µg/l)	TDS	296,000 - 2,770,000	500,000	2,630,000	638,000	952,000	1,800,000	DRY	DRY	1,170,000	254,000	574,000	790,000	768,000	<25,000	<25.0	NT	792,000	1,090,000	225,000	500,000	1,490,000
EPA APPENDIX IV																						
Antimony (µg/I)	7440-36-0	<3.80 - 12.00	1	3.90	<3.0	<3.0	<3.0	DRY	DRY	<3.0	<3.0	<3.0	<u>13.6</u>	<3.0	<3.0	<3.0	NT	<3.0	<3.0	<3.0	5.6	<3.0
Arsenic (µg/I)	7440-38-2	<2.50	10	5.00	<4.7	<4.7	<4.7	DRY	DRY	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	NT	<4.7	10.6	<4.7	10	20.5
Barium (μg/l)	7440-39-3	117 - 1,240	700	433	346	108	261	DRY	DRY	319	153	47.8	395	<u>976</u>	<1.0	<1.0	NT	<u>992</u>	737	81.0	1,000	76.9
Beryllium (µg/l)	7440-41-7	<0.50	4	0.500	<1.0	<0.20	<0.20	DRY	DRY	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	NT	<0.20	1.3	<0.20	6.5	<0.20
Cadmium (µg/l)	7440-43-9	<0.50	2	0.500	<0.40	<0.40	<0.40	DRY	DRY	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	NT	<0.40	<0.40	<0.40	2	<0.40
Chromium (µg/I)	7440-47-3	<2.50 - 33.90	10	2.50	<5.0	<5.0	<5.0	DRY	DRY	<1.0	<1.0	<1.0	<u>1,940</u>	<1.0	<1.0	<1.0	NT	<1.0	16.3	<1.0	50	<1.0
Cobalt (µg/I)	7440-48-4	<2.50 - 7.00	1	2.50	<5.0	<5.0	<5.0	DRY	DRY	<1.10	<1.10	<1.10	<u>20.4</u>	<1.10	<1.10	<1.10	NT	<1.10	13.8	<1.10	3	<1.10
Fluoride (µg/l)	16984-48-8	<20 - 590	2,000	189	180	<u>190</u>	170	DRY	DRY	<u>340</u>	600	<u>380</u>	120	<50	<50	<50	NT	<50	250	160	1,800	220
Lead (µg/l)	7439-92-1	<2.50 - 6.30	15	2.50	<1.60	<1.60	<1.60	DRY	DRY	<1.60	<1.60	<1.60	<u>6.8</u>	<1.60	<1.60	<1.60	NT	<1.60	46.3	<1.60	25	<1.60
Lithium (µg/l)	7439-93-2	7.50 - 70.40	NE	42.7	17.1	14.9	35.6	DRY	DRY	26.8	11.6	22.7	31.7	21.1	<0.42	<0.42	NT	21.8	13.2	<0.42	NE	51.2
Mercury (µg/l)	7439-97-6	<0.10	1	0.100	<0.1	<0.1	<0.1	DRY	DRY	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	<0.1	0.012	<0.1
Molybdenum (µg/l)	7439-98-7	<2.50 - 20.60	NE	6.80	<u>10.8</u>	<u>11.3</u>	<u>14.5</u>	DRY	DRY	<u>18.7</u>	<0.9	<u>8.3</u>	<u>49.5</u>	5.2	<0.9	<0.9	NT	5.4	<0.9	<0.9	160	248
Selenium (µg/l)	7782-49-2	<5.00	20	5.00	<4.7	<4.7	<4.7	DRY	DRY	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	NT	<4.7	<4.7	<4.7	5	<4.7
Thallium (µg/l)	7440-28-0	<5.00	0.28	13.7	<0.06	<0.12	<0.06	DRY	DRY	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	NT	<0.06	0.19	<0.06	0.24	<0.72
Radium 226 (pCi/l)	13982-63-3	0.0774 - 0.820	NE	0.800	0	0.247	<u>1.03</u>	DRY	DRY	0.76	-0.0968	0.681	0.316	0.105	0.459	-0.0338	NT	0.28	2.08	1.04	NE	0.458
Radium 228 (pCi/l)	15262-20-1	0.0230 - 1.56	NE	1.29	0.823	0.205	<u>1.45</u>	DRY	DRY	0.556	0.987	0.685	0.686	0.535	0.403	0.557	NT	0.649	1.96	0.658	NE	0.517
Combined Radium (pCi/l)	7440-14-4	0.304 - 2.93	NE*	2.09	0.823	0.452	<u>2.48</u>	DRY	DRY	1.32	0.987	1.37	1.00	0.64	0.862	0.557	NT	0.929	4.04	1.7	NE	0.975
EPA APPENDIX I META	-																					
Copper (µg/l)	7440-50-8	<2.50 - 16.40	1,000	2.50	<2.10	<2.10	<2.10	DRY	DRY	<2.10	<u>5.6</u>	<u>5.5</u>	<u>79.3</u>	<2.10	<2.10	<2.10	NT	<2.10	22.5	<2.10	7	<2.10
Nickel (µg/l)	7440-02-0	<2.50 - 18.20	100	2.50	<0.9	<0.9	<0.9	DRY	DRY	<u>5.1</u>	<0.9	<0.9	<u>880</u>	<0.9	<0.9	<0.9	NT	<0.9	12	<0.9	88	9.1
Silver (µg/l)	7440-22-4	<2.50	20	2.50	<2.50	<2.50	<2.50	DRY	DRY	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	NT	<2.50	<2.50	<2.50	0.06	<2.50
Vanadium (µg/l)	7440-62-2	<2.50 - 9.90	0.3	5.50	<1.30	<1.30	<1.30	DRY	DRY	<1.30	<1.30	<1.30	<u>18.8</u>	<1.30	<1.30	<1.30	NT	<1.30	78.1	<1.30	NE	<1.30
Zinc (µg/l)	7440-66-6	<5.00 -106	1,000	10.0	<3.90	<3.90	<3.90	DRY	DRY	<3.90	<u>11.4</u>	<3.90	<u>53.4</u>	<3.90	<3.90	<3.90	NT	<3.90	83.5	<3.90	50	<3.90
	-	-10.00	0.000	10.0	10.00	10.00	-0.00	DDV	DDV	10.00	-0.00	10.00	10.00	10.00	10.00	10.00	10.00	-0.00	10.00	-0.00	0.000	10.00
Acetone (µg/l)	67-64-1	<10.00	6,000	10.0	<6.20	<6.20	<6.20	DRY	DRY	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	<6.20	2,000	<6.20
Bromodichloromethane (µg/l)	75-27-4	<0.18	0.6	0.260	< 0.26	< 0.26	< 0.26	DRY	DRY	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26	< 0.26	<0.26	< 0.26	< 0.26	< 0.26	<0.26	NE	<0.26
Bromoform (µg/l)	75-25-2	<0.26	4	0.620	< 0.62	< 0.62	<0.62	DRY	DRY	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	< 0.62	<0.62	< 0.62	< 0.62	< 0.62	< 0.62	4.3	<0.62
Chloroform (µg/l)	67-66-3	<0.14 - 1.80	70	2.30	<2.30	<2.30	<2.30	DRY	DRY	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	<2.30	5.6	<2.30
Dibromochloromethane (µg/l)	124-48-1	<0.21	0.4	0.41	< 0.41	< 0.41	< 0.41	DRY	DRY	< 0.41	< 0.41	< 0.41	< 0.41	<0.41	< 0.41	<0.41	< 0.41	< 0.41	< 0.41	<0.41	NE	<0.41
Carbon Disulfide (µg/l)	75-15-0	<1.20	700	1.20	< 0.40	<0.40	<0.40	DRY	DRY	< 0.40	<0.40	< 0.40	< 0.40	< 0.40	<0.40	<0.40	<0.40	< 0.40	< 0.40	<0.40	NE	<0.40
Dibromomethane (µg/l)	74-95-3	<0.21	70	0.460	< 0.46	< 0.46	<0.46	DRY	DRY	< 0.46	< 0.46	< 0.46	< 0.46	<0.46	<0.46	<0.46	<0.46	< 0.46	< 0.46	<0.46	47	<0.46
1,4-Dichlorobenzene (µg/l)	106-46-7	<0.33	0	0.330	<0.26	<0.26	<0.26	DRY	DRY	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	63	<0.26

Notes:

* = no established 2L Standard. 5 (pCi/l) is the Federal Standard

†= potential SSIs as they are non-detected constituents that had detected values

BTV = background threshold value calculated for January 2019

NE = not established

NT = not tested

VOCs = volatile organic compounds

µg/l = micrograms per liter

pCi/l - picocuries per liter

Shaded = concentration reported above established 2L Standard, IMAC, or 2B Standard

Bold/Underlined = concentration exceeded BTV

2L Standard = North Carolina Groundwater Protection Standard (T15A NCAC 02L .0202)

IMAC = Interim Allowable Maximum Concentration

2B Standard = North Carolina Surface Water and Wetland Standards (15A NCAC 02B) for Gulf Creek (SW-1) a Shaddox Creek (SW-2) which are both Class WS-IV Waters or are National Criteria per EPA pH was field tested

Groundwater, surface water, and leachate samples collected from January 21-25, 2019 and analyzed for above parameters by Pace Analytical Services, LLC

Pre-ash concentration range = range of concentrations taken from MW-1 thru MW-8 and BG-1 during the October 2015 sampling event

4.3 Surface Water Analytical Results

Surface water samples were compared to the North Carolina Water Quality Standards for Surface Waters established under T15A NCAC 02B (2B Standards) or the EPA National Criteria Standard (utilized by the North Carolina Division of Water Quality as default standards for parameters not listed in 15A NCAC 02B). Concentrations of the following constituents have exceeded 2B Standards at sampling location SW-1: TDS, arsenic, lead and zinc. Though silver was not detected, the silver MDL (2.50 μ g/L) is greater than the 2B Standard (0.06 μ g/L). No exceedances of target analytes were reported in the surface water sample collected from the SW-2 location.

Standards have not been established under T15A NCAC 02B for the following constituents detected: boron, calcium, cobalt, lithium, radium 226, radium 228, vanadium, bromodichloromethane, dibromochloromethane, and carbon disulfide. Laboratory results are presented in **Table 6**.

4.4 Leachate Analytical Results

One sample of leachate generated on-site was collected and analyzed this event. In general, results have shown a declining trend for EPA Appendix III, Appendix IV, and Appendix I Metal analytes when compared to results from previous events. The July 2019 Leachate sample had slightly higher concentrations in detected analytes than the previous January 2019 sampling event, but are within historical ranges, except for sulfate and TDS which showed historical highs. Leachate sampling is required by the Permit to Operate and is disposed of in compliance with the Clean Water Act at either the City of Sanford's Big Buffalo Creek Wastewater Treatment Plant or the Town of Spring Lake's South Harnett Regional Wastewater Treatment Plant.

5 Statistics

5.1 Methodology

Background groundwater quality was evaluated to establish statistically-derived background concentrations for the site. Groundwater quality in downgradient wells were then compared to background concentrations to determine if a statistically significant increase (SSI) over background has occurred, as required by Section .1600 rules of the North Carolina Solid Waste Management Rules 15A NCAC 13B.

Sampling results used to establish background threshold values (BTVs) were obtained during sixteen monitoring events performed between October 2015 and January 2019. BTVs were not updated during this sampling event. Therefore, July 2019 sampling results were not used in the statistical analysis of BTVs. Downgradient sampling results from two detection monitoring rounds in January 2019 and July 2019 were used to evaluate for SSIs. Software packages ProUCL, NCSS, R and SPSS were used in the production of the statistics (ProUCL is offered by the USEPA; R is a free software environment; NCSS and SPSS are licensed software packages).

Groundwater samples collected as part of the monitoring program were analyzed for EPA Appendix III and Appendix IV constituents, Appendix I Metals, and Appendix I Volatile Organic Compounds (VOCs). Only non-filtered sample results were utilized for the statistical analysis of monitored constituents.

5.1.1 Statistical Analysis

The background sample size (i.e., quantity of qualifying samples) was evaluated per constituent. Descriptive statistics were calculated for the background data set including non-detect (ND) values and excluding ND values. When NDs were included in the data set, the method detection limit (MDL) was substituted as the ND value for simple descriptive statistics. The analysis was performed with NDs removed to better understand the central tendency and range of the detected values. Note that for the trend analyses in **Section 5.1.4** and for the establishment of statistically-derived background concentration levels in Section 5.2, imputation methods using the maximum likelihood method (MLE) for NDs, regression on order statistics (ROS) or Kaplan-Meier (KM) methods, where appropriate, were used.

Following the calculation of descriptive statistics, the statistical analysis for the background data set was performed to evaluate for outliers, data distributions, and trends for Appendix III and IV constituents, Appendix I Metals, and Appendix I VOCs, where data quantity and quality permit. A total of seventeen samples (sixteen monitoring events from BG-1 and one monitoring event from BG-2) were included for the descriptive analysis of the background monitoring well results for the monitored constituents. The first sampling event conducted in August 2015 was not included in the analysis as data obtained during this event were not consistent with data from subsequent rounds; sample analyses for the August 2015 event were performed by a different laboratory, possibly accounting for the disparity in results.

For downgradient monitoring results, the data analysis included the calculation of descriptive statistics for Appendix III and IV constituents, Appendix I Metals, and Appendix I VOCs (for the data sets including and excluding ND values), followed by an evaluation of outliers and trends. A total of seventeen monitoring events performed between November 2015 and July 2019 were included for the descriptive analysis of the downgradient monitoring well results for the monitored constituents.

5.1.2 Outliers

Outliers are values that are not representative of the population from which they are sampled. The background and downgradient data sets were screened for outliers using the Dixon's outlier test, which is suitable for data sets containing less than 25 samples. The outlier test was conducted using a significance of one percent. For constituents that had NDs, the NDs were removed prior to testing for outliers.

Statistical outliers were identified in the background data set evaluated for three Appendix III constituents (calcium, sulfate, and total dissolved solids) and one Appendix IV constituent (barium). The constituent concentrations identified as statistical outliers were sampled from the newly installed background well BG-2, except for total dissolved solids.

Statistical outliers were identified intermittently for numerous Appendix III and Appendix IV constituents and Appendix I Metals, in the data sets evaluated for downgradient monitoring wells throughout the monitoring period.

The statistical outliers were investigated as possible data entry or measurement errors. The values were all within one order of magnitude of other observations and deemed correct. Given the variable nature of groundwater samples, the small sample sizes and that it is common for groundwater quality samples to have very low or very high concentrations over time, statistical outliers are expected but do not necessarily signify that the outliers are from different distributions. As additional background samples are collected over time, outlier test results may change and earlier observations thought to be outliers may no longer be outliers.

5.1.3 Data Distribution

Groundwater data was fitted to known distribution models using Goodness-of-Fit (GOF) tests incorporated into ProUCL. For data sets comprised of 50 or fewer samples, ProUCL's GOF module incorporates the Shapiro-Wilk GOF test to determine normal or lognormal distribution and Anderson-Darling to determine gamma distribution. Normal, lognormal and gamma distributions are parametric distributions. If a data set could not be fit with any of these three parametric distributions, it was considered to follow a nonparametric distribution.

Note that ProUCL does not provide GOF results for data sets with less than three detected values due to insufficient data. For purposes of estimating background concentrations, these data sets were treated under non-parametric distribution assumptions with the maximum detected value chosen to represent the background concentrations.

5.1.4 Trends

Background constituent concentrations in groundwater should demonstrate stationary conditions through time, free of trends. Constituents were analyzed for trends within the data set using a maximum likelihood estimate (MLE) regression for constituents which followed parametric distributions and Mann-Kendall tests for those that were treated under nonparametric distributional assumptions. The MLE regression can be applied to data sets that can be fitted to a specific distribution model, and that contain NDs with multiple MDLs. The Mann-Kendall test is suitable for data series with no discernable distributions and only one MDL value for NDs.

Constituents treated under nonparametric data assumptions (either tested as nonparametric or having more than 50 percent NDs) and with multiple MDLs or with less than three detected values were not assessed for trends.

The background well regression analysis showed a potential increasing trend for one Appendix III constituent (fluoride) and a potential decreasing trend for two Appendix III constituents (boron and chloride) and one Appendix IV constituent (barium). There were no increasing or decreasing trends identified for other constituents with sufficient data quantity and quality for testing with the MLE analysis or Mann-Kendall test. Although statistical trends were identified for boron, barium, chloride, and fluoride, the results can be misleading due to the short duration of the sampling program.

Trends were also evaluated for constituents in each downgradient well using the same methods as described above for the background data set. Trends were identified for select constituents at select monitoring well locations and should be monitored as additional downgradient groundwater data are collected at the site (**Section 4.2**).

5.1.5 Spatial Variability

Spatial variability refers to identifying whether or not there are statistically identifiable differences in mean concentrations or variance levels across the well field (i.e., the pooled background data). The results from background wells BG-1 and BG-2 were assessed to determine if it is appropriate to pool the data to calculate background concentrations. Results of sampling from well BG-2 were compared to the BTVs established in 2018 with the BG-1 well concentrations. The majority of the concentrations in BG-2 were below the former BTVs, therefore no evidence of spatial variability was identified. The constituents in BG-2 will be monitored as additional background groundwater data are collected at the site.

5.2 Evaluation for SSIs over Background

Based on the statistical evaluations performed, BTVs were calculated for the detection monitoring program at the site for Appendix III and IV constituents and Appendix I metals. Note that UPLs were not calculated for Appendix I VOCs as all of these constituents were 100 percent non-detects. For constituents that have all ND background values, the maximum MDL is chosen to represent background and the double quantification rule (DQR) is used to evaluate whether or not there is an SSI. The BTV provided for detection monitoring constituents is the statistically-derived background concentration (i.e., upper prediction limit [UPL]), the maximum

detected value or the maximum MDL depending on the level of censorship in each of the background samples.

Downgradient sampling results from the first detection monitoring round in January 2019 and the second detection monitoring round in July 2019 were used to test for SSIs. Downgradient concentrations were compared to BTVs. For constituents that have all ND background values, the DQR is applied; that is, an SSI is registered for the well-constituent pair if the downgradient concentrations exhibit detects in two consecutive sampling events. The downgradient sampling results collected in April 2019 were used to assess if an SSI occurred for detected constituents with all ND background values in the first detection monitoring round. For the second detection monitoring round, constituents under the DQR were flagged if they exhibited detect results. If the downgradient concentrations for these constituents remain as detects in the consecutive sampling event, then they will be considered SSIs.

5.3 Statistical Summary

BTVs were calculated using wells BG-1 and BG-2 as the background monitoring wells. However, eight monitoring wells (MW-1 through MW-8) were installed and sampled (October 2015) prior to ash placement, thus representing pre-ash conditions at the site.

In the first detection monitoring round, SSIs were found for six Appendix III constituents (boron, calcium, chloride, fluoride, pH (field), and sulfate), eight Appendix IV constituents (barium, chromium, fluoride, lithium, molybdenum, radium-226, radium-228, and total radium), and four Appendix I metals (copper, nickel, vanadium and zinc). No SSI was registered for the two Appendix IV constituents (cobalt and lead) because, although the non-detected constituents had detect values in the January 2019 detection monitoring round, the next sampling event in April 2019 did not exhibit detects for these constituents at the specified downgradient wells. When results of the January 2019 sampling event are compared to the pre-ash sampling results from those eight wells, current downgradient groundwater constituent concentrations are generally similar to concentrations reported prior to ash placement. Of the seventeen constituents with observed SSIs, eight are within the range of pre-ash conditions.

In the second detection monitoring round, wells MW-2 and MW-3 were dry and have no samples. SSIs were found for eight constituents. Four Appendix III constituents (calcium, chloride, fluoride, and pH (field)), three Appendix IV constituents (barium, fluoride, and molybdenum), and two Appendix I metals (vanadium and zinc). Note that fluoride is listed as a constituent in both Appendix III and Appendix IV. Four Appendix IV constituents (antimony, chromium, cobalt, and lead) and two Appendix I metals (copper and nickel) were flagged as potential SSIs as they are non-detected constituents that had detected values. If the downgradient concentrations for these constituents exhibit detects in the next sampling event (October 2019), then an SSI would be registered. Of the eight constituents with observed SSIs, four are within the range of pre-ash conditions and four are outside the range of pre-ash conditions.

Depending on the data distribution of the constituent, the BTVs have been computed to allow for one to three verification samples. With verification sampling, the validity of the SSIs can be

confirmed. Additional details regarding statistical methodology and results is provided in **Appendix E**.

6 Summary and Conclusions

The 2019 Second Semi-Annual Detection Monitoring Event was conducted at the Brickhaven No. 2 Mine Tract "A" Structural Fill site from July 8-11, 2019. A summary of the findings from is provided below.

6.1 Groundwater

- Groundwater concentrations of chloride, pH, TDS, antimony, barium, chromium, cobalt, nickel and vanadium exceeded the 2L Standards or IMACs during the current sampling event.
- No exceedances were reported for EPA Appendix I VOCs.
- Concentrations of calcium, lithium, molybdenum, radium 226, radium 228, and combined radium were detected above the laboratory MDLs; however, standards have not been established by NCDEQ for these constituents.
- TDS concentrations increased in BG-1, BG-2, and MW-1 during this sampling event. Well MW-7R had generally increased concentrations from the previous event with exceedances in chloride, TDS, antimony, chromium, cobalt, nickel and vanadium.
- Groundwater wells MW-2 and MW-3 were dry and not sampled during this event.
- Concentrations of chloride and barium, and pH, have generally remained consistent with previous sampling events.

6.2 Surface Water

- TDS, arsenic, lead and zinc exceeded the 2B Standard in the sample collected from sampling location SW-1. SW-1 was sampled outside the property boundary and results may have off-site influences.
- Concentrations of boron, calcium, chloride, lithium, radium 226, radium 228, and vanadium were detected above the laboratory MDLs; however, standards have not been established by NCDEQ for these constituents.

6.3 Leachate

• Leachate samples collected during this sampling event generally show an increase in detected concentrations of EPA Appendix III, Appendix IV, and Appendix I Metals. Though concentrations show an increase, they are within the range of concentrations sampled from groundwater.

6.4 Statistical Analysis

- The analysis is based on an interwell analysis consisting of sixteen monitoring events of the background well BG-1 and one monitoring event of the background well BG-2 (nine more than the required eight). Subsequent sampling events could provide greater refinement and confidence of statistical significance.
- Statistical outliers were identified in the background data set evaluated for barium, calcium, sulfate, and TDS. Intermittent statistical outliers for Appendix III and Appendix IV constituents and Appendix I Metals, in the data sets evaluated for downgradient monitoring wells, were noted throughout the monitoring period. As the sample size is

- Groundwater quality in wells were compared to background concentrations to determine if a statistically significant increase (SSI) over background has occurred:
 - In the detection monitoring round in January 2019, seventeen SSIs were found: boron, calcium, chloride, fluoride, pH (field), sulfate, barium, chromium, lithium, molybdenum, radium-226, radium-228, total radium, copper, nickel, vanadium and zinc.
 - When results of the January 2019 sampling event are compared to the pre-ash sampling results, eight of the seventeen are within the range of pre-ash conditions.
 - In the detection monitoring round in July 2019, eight SSIs were found: calcium, chloride, fluoride, pH (field), barium, molybdenum, vanadium, and zinc. Wells MW-2 and MW-3 were dry and have no samples.
 - When results of the July 2019 sampling event are compared to the preash sampling results, four of the eight constituents are within the range of pre-ash conditions.
- From the July 2019 evaluation, four Appendix IV constituents (antimony, chromium, cobalt, and lead) and two Appendix I metals (copper and nickel) were flagged as potential SSIs as they are non-detected constituents that had detected values.
- HDR believes that the presence of SSIs is the result of low background concentrations that may not represent data collected prior to CCP placement (August and October 2015 sampling events) and is influenced by natural and seasonal variations at the site. In general, the SSIs reported during this sampling event are either consistent with those evaluated in the Alternate Source Demonstration (ASD) dated March 29, 2019 or are potential SSIs to be verified during the next sampling event.

7 Recommendations

Based on the findings, HDR makes the following recommendations:

- Continue to sample semi-annually in accordance with permit requirements.
- Discontinue sampling for EPA Appendix I VOCs. VOCs have only been detected in MW-2 (October 2015), an ambient blank (July 2016), and an equipment blank (July 2016). VOCs are not typically associated with CCP and continued analysis of VOCs is unlikely to provided new information.
- Evaluate the validity of SSIs by further assessing sampling protocols/performance, spatial variability, and seasonality of constituent concentrations as additional sampling rounds are conducted.
- HDR recommends that the site proceed to Assessment Monitoring and follow the Proposed Assessment Plan submitted to NCDEQ on August 16, 2019.

8 References

Buxton Environmental. 2015a. *Water Quality Monitoring Plan for Brickhaven No.2 Mine Tract* "A" Structural Fill.

Buxton Environmental. 2015b. Compliance Groundwater Well Installation, Development, Surveying and Hydraulic Conductivity Determination Activities Report for Brickhaven No.2 Mine Tract "A" Structural Fill.

Buxton Environmental. 2015c. *Initial Background Groundwater & Surface Water Monitoring Event.* October 2015.

Buxton Environmental. 2016. Design Hydrogeologic Report for Brickhaven No.2 Mine Tract "A" Structural Fill. Addendum 2, March 2016.

HDR. 2014. Permit Application for Brickhaven No.2 Mine Tract "A" Structural Fill including Design Hydrogeological Report.

HDR. 2015. 2015 Semi-Annual Groundwater, Surface Water, and Leachate Sampling Report. December 2015.

HDR. 2016a. 2016 First Semi-Annual Groundwater, Surface Water, and Leachate Sampling Report. May 2016.

HDR. 2016b. Background Sampling Report. November 2016.

HDR. 2017. 2017 Initial Semi-Annual Detection Monitoring Report. January 2017.

HDR. 2017b. 2017 Semi-Annual Detection Monitoring Report. October 2017.

HDR. 2018. 2018 First Semi-Annual Detection Monitoring Report. January 2018.

IBM Corp. Released 2013. *IBM SPSS Statistics for Windows, Version 22.0*. Armonk, NY: IBM Corp.

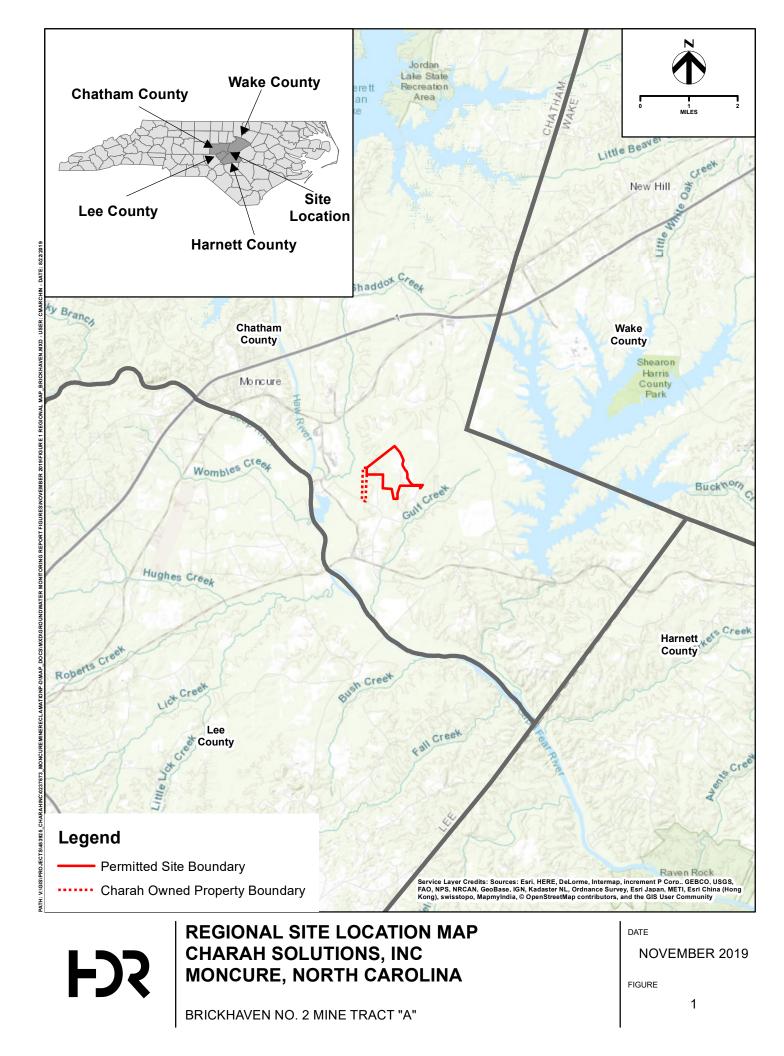
NCSS, LLC. 2013. NCSS 9 Statistical Software. Kaysville, Utah, USA, ncss.com/software/ncss.

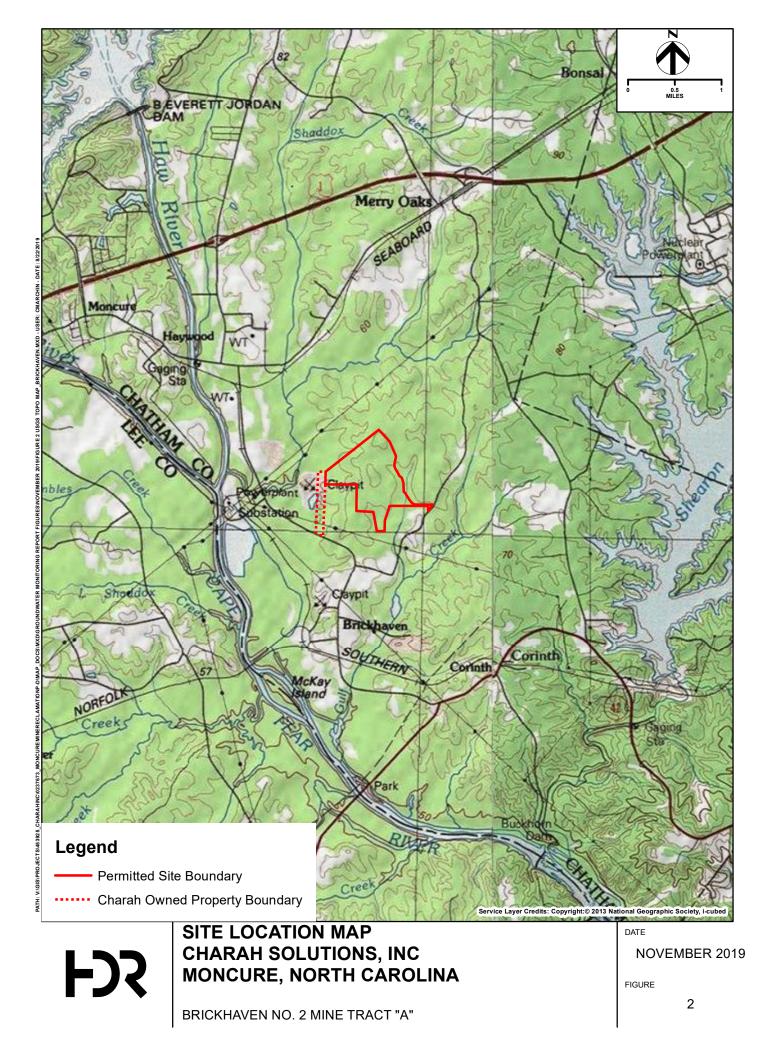
NCDEQ. 2008. Solid Waste Section Guidelines for Groundwater, Soil, and Surface Water Sampling.

North Carolina Department of Natural Resources and Community Development. 1985. *North Carolina Geologic Map.*

North Carolina General Assembly. *Coal Ash Management Act (CAMA) of 2014 (Senate Bill 729).* Ratified.

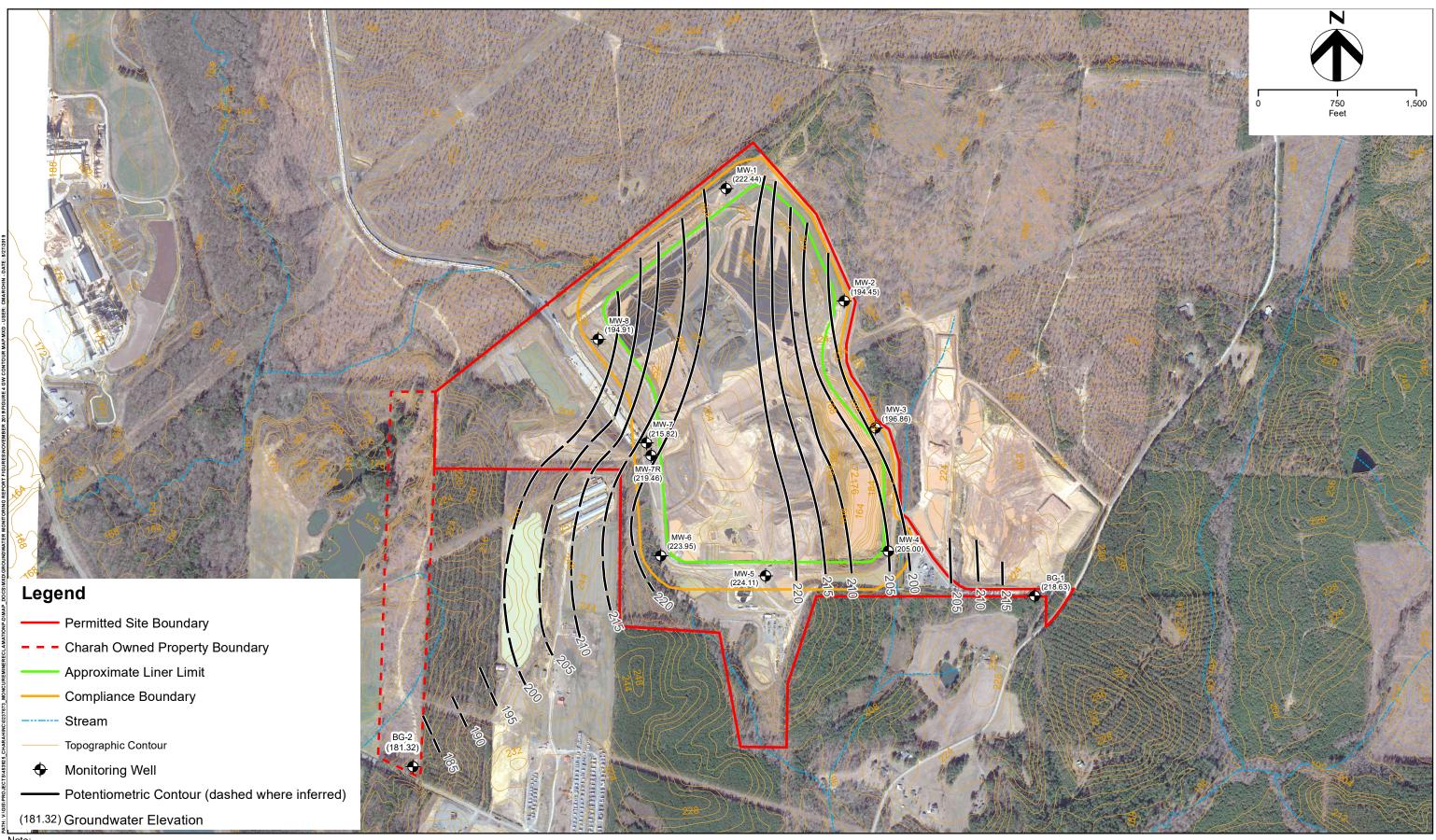
R Core Team. 2018. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.


Singh, A. and Ashok Singh. 2015. *ProUCL 5.1.002 Technical Guide Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations.* EPA/600/R07/041.


Singhal, B. B.S. and R. P. Gupta. 2010. *Applied Hydrogeology of Fractured Rocks: Springer, 2nd Edition*, 408p. (Table 8-1, p. 140)United States Geological Survey. 2004. *Arsenic, Nitrate, and Chloride in Groundwater, Oakland County, Michigan.*

Figures

Figure 1: Regional Site Location Map Figure 2: Regional USGS Topographic Map Figure 3: Sample Location Map Figure 4: Potentiometric Surface Map – July 2019

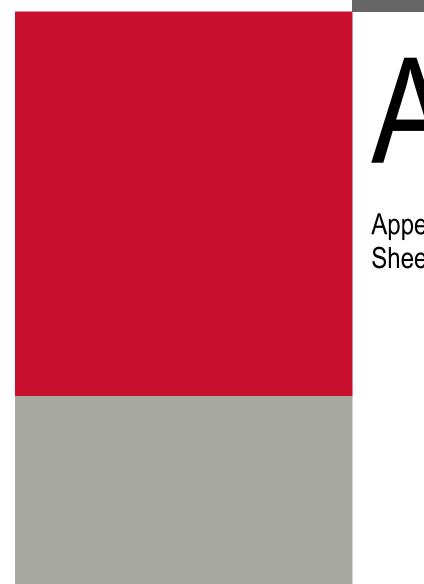

SAMPLE LOCATION MAP CHARAH SOLUTIONS, INC. MONCURE, NORTH CAROLINA

BRICKHAVEN NO. 2 MINE TRACT "A"

DATE

NOVEMBER 2019

FIGURE



Note:

Groundwater elevations derived from depth to water measurements collected on July 8, 2019.
 Topography data for the site was obtained from NCDOT Geographic Information System (GIS) website (Dated 2007).

POTENTIOMETRIC SURFACE MAP - JULY 2019 CHARAH SOLUTIONS, INC. MONCURE, NORTH CAROLINA FSS BRICKHAVEN NO. 2 MINE TRACT "A"

DATE NOVEMBER 2019 FIGURE 4

Appendix A – Field Data Sheets

GROUNDWATER DEPTH

Project Name:	<u>Charah – Brickhaven</u>	Date: 8 Jul 2019
Project Address:	Moncure, NC	Project No: 237673-019
Time Started:		Time Finished:
Personnel:	J. Ruffing	

Well ID Water Depth BG-1 69.56 Depth BG-2 12.41 Depth MW-1 57.64 Depth MW-2 37.31 Depth MW-3 25.70 Depth MW-4 12.13 Depth MW-5 20.45 Depth MW-7 15.56 Depth MW-7R 20.445 Depth MW-8 37.56 Depth	_
BG-2 12.91 MW-1 \$7.64 MW-2 37.31 MW-3 25.70 MW-4 12.13 MW-5 20.75 MW-6 700	
MW-2 37.31 MW-3 25.70 MW-4 12.13 MW-5 20.75 MW-6 700	
MW-2 37.31 MW-3 25.70 MW-4 12.13 MW-5 20.75 MW-6 700	
MW-3 25.70 MW-4 12.13 MW-5 20.75 MW-6 200	
MW-4 12.13 MW-5 20.75 MW-6 700	
MW-6 700	
MW-6 700	
MW-7 15-69	
MW-7R 20.44	
MW-8 37.56	
-	
	_
	-

Well ID	Depth to Water	Total Depth

MONITORING WELL SAMPLING LOG

SITE NAME/	LOCATIO	DN: Charah	Brickhave	en			PROJECT	#: 237673	8-019
DATE:	Z)./	7019				SAMPLER'	S INITIALS	: Zh	-
WELL ID: (lacha	+1	WELL DIAN	ETER (in):	2	_	WELL DEP	TH (ft):	
SCEENED Ler	ngth (ft):	-	۸() ۱		•6	DEPTH TO	WATER (ft)	:	
PURGE METH	IOD:		Low flow			SAMPLING	METHOD:	Pely tubing	
Sample Time	:		12- (1	30	.(Sample Da	te:	115	7/8
			St	abilization	Requireme	nts			
SC - 3% DO - 10% or <	0.5mg/L		pH ± 0.1 Turb. 10% c			ORP ± 10m	V		
			F	PURGE MEA	SUREMENT	S	1		
lime i	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)
1130				28.2	1431	7.30	7.78	8.59	-51.8
	\langle								
		$\overline{\ }$							
						· · · · · · · · · · · · · · · · · · ·			
			\sim						
						1.			
						~			
								~	
	-								

MONITORING WELL SAMPLING LOG

	SITE NAME/LOCATION: Charah Brickhaven						PROJECT #: 237673-019 SAMPLER'S INITIALS:				
)	DATE: 4 JJ 2019										
	WELL ID: Sw-l WELL DIAMETER (in):					2	2 WELL DEPTH (ft):				
X.	SCEENED L	ength (ft):					DEPTH TO WATER (ft):				
)	PURGE METHOD: Sample Time:		-Low flow 1215			5 -	SAMPLING METHOD: Sample Date:		Poly tubing 7/8/19		
	Stabilization Requireme						nts				
	SC - 3%			pH ± 0.1			ORP ± 10m	V			
	DO - 10% o	r <0.5mg/L		Turb. 10% c		SUREMENT	c				
	1	1	Depth to					1,	1		
	Time	Liters Purged	Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (µS/cm)	DO (mg/L)	pН	Turbidity (NTU)	ORP (mV)	
	1213	-	-	*	26.6	117.9	4.08	7.01	Wellange	-18.0	
ς.											
2											
24											
									(
)											
								\vdash			
0								·	$\left \right\rangle$		
2											
)											

MONITORING WELL SAMPLING LOG

	SITE NAME/LOCATION: Charah Brickhaven						PROJECT #: 237673-019						
)	DATE: 8 Jul 2019				SAMPLER'S INITIALS:								
	WELL ID:	WELL ID: Sw~Z WELL DIAMETER (in):					WELL DEPTH (ft):						
	SCEENED L	ength (ft):					DEPTH TO WATER (ft):						
)	PURGE ME	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing				
	Sample Time: (2			0		Sample Date		ite:	7/4/	19			
Stabilization Requirements													
	SC - 3%			pH ± 0.1		ORP ± 10mV							
	DO - 10% or <0.5mg/L Turb. 10% or <5NTU												
				F	PURGE MEA	SUREMENT	S						
	Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	(C)	SC (μS/cm)	DO (mg/L)	pН	Turbidity (NTU)	ORP (mV)			
	1200	~			29.0	489	4.50	7.78	47.2	-60.0			
ł													
)													
						·							
1						<u> </u>							
								\vdash	Į				
									\frown				
n jį									\square				

SITE NAM	E/LOCATIO	DN: Charah	n Brickhave	en	PROJECT #: 237673-019						
DATE:	0 20	2019	•5			SAMPLER	'S INITIALS		2		
WELL ID:	Mw	(WELL DIAM	AETER (in):	2		WELL DEP	'TH (ft):	75.30		
SCEENED L	.ength (ft):		(-	DEPTH TO	WATER (ft				
PURGE ME	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing	g		
Sample Tir	me:	17	οζ	o≤ Sample Date:					7/10/19		
			St	abilization	Requireme	nts					
SC - 3% DO - 10% of	r <0.5mg/L		pH ± 0.1 Turb. 10% d			ORP ± 10m	V				
				PURGE MEA	SUREMENT	S					
Time	Liters Purged	Depth to Water (BTOC ft)		Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)		
17 1500	1	57.80	300	22.4	875	0.81	6.74	429	-65.5		
1505	250	57.80	300	22.2	942	0.37	6.85	316	-64.7		
1510	\$4	57.80	1	27.6	1105	0.25	6.82	153	-58.4		
1520	5.50			22.8	1429	0.23	6.76	95.6	-55.8		
1530	7			27.7	1938	0,26	6.66	49.9	-52.0		
1540	\$.50			27.8	2/28	0,29	6.63	37.4	-50.8		
1550	-10			22.3	2769	0.31	6.60	32.0	-49.5		
1600	#1-5			22.0	2387	0.33	657	29.0	-48.2		
1610	13			22.4	2495	0.33	6.58	18.4	-49.0		
16:5	14.5			22.7	2528	0,33	6.58	14,1	- 49.3		
1620	16			22.3	2614	0.34	6.57	14-1	-30.5		
1625 1635	47.5			22.8	2730	0.34	6.57		-51.0		
1645					3179	0.37	6.54	12.6	-51,3		
1700				22.5	3314	0.43	6.50	15.6	-501		
	-2h1		e		5314	0,70	6.50	8.30	-50.4		
		prig									
					1						

		E/LUCATIC	DN: Charah	Brickhave	en			PROJECT	#: 237673	8-019
[DATE:	8 1.1	2014	· _			SAMPLER	S INITIALS	- 910	2
	WELL ID:	MW-	2	WELL DIAM	AETER (in):	2		WELL DEP	TH (ft):	50.15
S	SCEENED L	ength (ft):				0	DEPTH TO	WATER (ft):37.	31
F	PURGE ME	THOD:		Low flow		4	SAMPLING	METHOD:	Poly tubing	2
S	Sample Tir	ne:				Sample Date:				
Г				St	abilization	Requiremen	nts			
s	SC - 3%			pH ± 0.1	ubrillucion	incident citici	ORP ± 10m	v		
L		r <0.5mg/L		Turb. 10% (or <5NTU					
		0			PURGE MEA	SUREMENT	s			
	Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV
	1300		37.31		PUMA	ped d	ry -			
		well.		ot re	COVE	Water	over L	tdays		
								1		
									3	
_										
_										
_										
_										
-	_		\checkmark							
		- 1								
Ī		//-)		n				
1				1		/				
ì		-/		\square	/ /					
Ē				TA	11	11 /				
ſ					\mathbf{I}	H/	1			
1				/	/ /	$\forall \partial$				
				- t.	/		20	m	10	
Ì								P	12	
ľ								-		
Γ									1	

SITE NAN	E/LOCATIO	DN: Charal	n Brickhav	en	PROJECT #: 237673-019					
DATE:	81-1	2019	-			SAMPLER'	'S INITIALS	<u></u>	2	
WELL ID	S MW	-3	WELL DIAM	METER (in):	2		WELL DEP	TH (ft):	-4	
SCEENED	Length (ft):				20	ДЕРТН ТО	WATER (ft): 24.	94	
PURGE ME	THOD:		Low flow		-8	SAMPLING	METHOD:	Poly tubing	3	
Sample Ti	me:				-8	Sample Da	te:	-		
			St	abilization	Requiremen	nts				
SC - 3%			pH ± 0.1		•	ORP ± 10m	V			
DO - 10% o	r <0.5mg/L		Turb. 10% (
	1			PURGE MEA	SUREMENT	S				
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (µS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
1330		24.94							~	
1345	2.,25	25.20	150	24.4	4225	3,41	6.90		-21.0	
1400	4.50	28.75	150	26.6	4228	3.79	7.09	136	-74.9	
1405	6.75	29.20	150	23.1	4147	4.00	7.06	134	-29.5	
1410	9.9	19.80	150	24.2	4059	4.16	7.08	60.9	-30.8	
W.	iter lei	rel not	Stab	e - po	mpd	ry w	wit for	1Cchulg	<u>e</u>	
				,						
		<u></u>								
	1	1								
		7								
		$\overline{\mathcal{N}}$		N						
				/ /						
		1 1								
				0	\leq			1		
					>					
					9	61	2			
						701	0			
						1.1				

SITE NAME/LOCATION: Charah Brickhaven						PROJECT #: 237673-019				
DATE:	9 101	2019				SAMPLER'	S INITIALS	: JL		
WELL ID:	MW-	4	WELL DIAN	ETER (in):	2		WELL DEP	TH (ft):	25.34	
SCEENED L	ength (ft):					DEPTH TO	WATER (ft): 11.7	-0	
PURGE ME	THOD:		Low flow			SAMPLING METHOD: Poly tubing				
Sample Tir	ne:	05	55			Sample Date: <u>7/9/15</u>				
			St	abilization	Requiremer	nts			Т	
SC - 3%	r <0.5mg/l		pH ± 0.1 Turb. 10% d	ORP ± 10mV						
DO - 10% or <0.5mg/L Turb. 10% or <5NTU PURGE MEASUREMENTS										
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
0540	1	1352	250	19.1	2040	7.23	5,89	660	-4.1	
0845	2.25	14.12	250	18.8	2129	5.79	6.00	567	-22.4	
0900		15.67	300	18.7	2184	2.37	6.02	332	-17.3	
0905		16.61	300	18.7	2225	2.24	6.10	98.1	-205	
0915		15.90	300	18.7	2207	2.08	6.12	32.7	-19.3	
0925	20	16:590	300	18.8,	2181	1.79	6.10	35.7	- 17.2	
0430	21.5	X45.40	300	18.8	2176	1.62	6.07	40.3	-15.1	
0935		15.90	300	14.0	7103	1.46	6.03	24.3	-13.5	
0940		15.90	300	19.1	2234	1.33	6.02	16.9	./3./	
0945		15.90	300	19.1	2241	1.28	6.03	13.6	-13.2	
0950	40	15.40	300	19.1	2245	1.21	6.07	16.6	-15.6	
1005	17.5	45.90	300	19.1	2235	1.13	6.13	16.3	-20,4	
TOIS		17.02	150	2	0770	0.0.4		1/2-	- 12	
1020		16.51	150	20.6	2229	0.96			-247	
1030		15.71	150	20.8	2227		6.24	14.1	- 25.0	
1040		15,65	150	21.0	2234	0.85	6.23	9.17	-26.0	
		$\overline{}$								
		2 hi	flim	i+						
							-			
· · · · · · · · · · · · · · · · · · ·										

	SITE NAME	E/LOCATIC	DN: Charah	Brickhave	en	PROJECT #: 237673-019					
)	DATE:	4 201	2019	<u>.</u>			SAMPLER'	S INITIALS	: 91	2	
	WELL ID:	MW-	5	WELL DIAM	AETER (in):	2		WELL DEP	TH (ft):	46.14	
	SCEENED L	ength (ft):					DEPTH TO	WATER (ft)	: 20.	75	
)	PURGE MET	THOD:		Low flow			SAMPLING	METHOD:	Poly tubing	<u>}</u>	
	Sample Tin	ne:	1450				Sample Date: $\frac{7/9}{19}$				
				St	abilization	Requiremer	nts				
	SC - 3% DO - 10% or	<0.5mg/L		pH ± 0.1 Turb. 10% (or <5NTU		ORP ± 10m	V			
					PURGE MEA	SUREMENT	S				
	Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	· ·	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
	1455	4	25.78	250	22.8	4.5	6.45	6.79		-34.1	
						pmotor					
	1525	5_	2450	250	23.0	425,4		6.47		-17.7	
5	1530	6.25	26.20	250	23.2	409.2	1.25	6.46	1000		
	1545	13:00	27.71	250	25.8	371.8	28.9	6.67	660		
	(a)	n't ste	bilize	water		4738	dry-	wait	folley		
	1450		~		24.7	475.8	2.41	6.25	122	-24.0	
		<u> </u>									
			<								
									1		
1								-			
									· · · · · · · · · · · · · · · · · · ·		
								\sim			

7/9

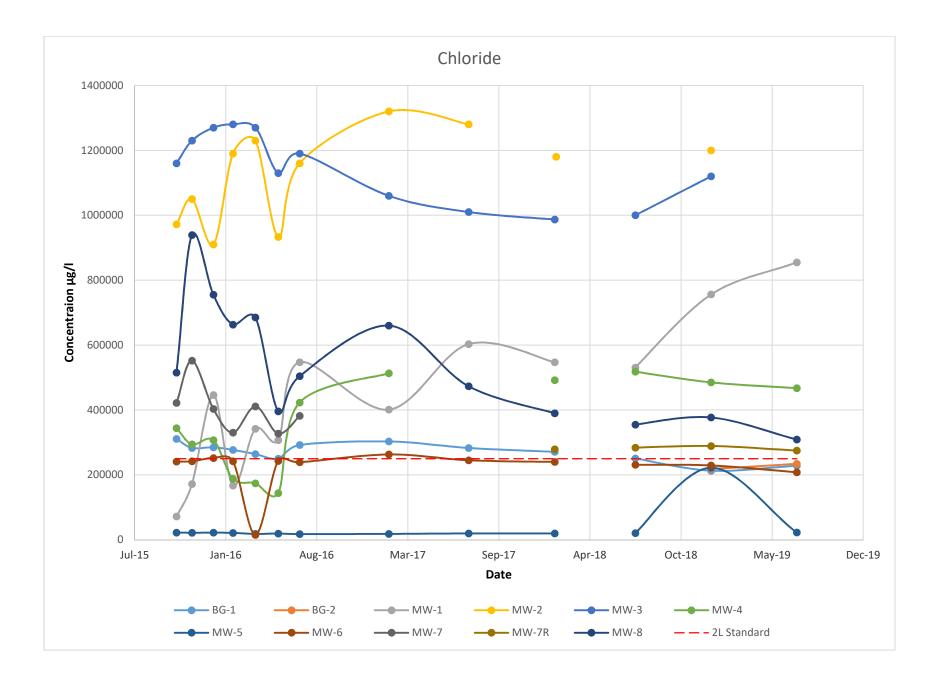
	SITE NAM	E/LOCATIC	N: Charah	Brickhave	en	PROJECT #: 237673-019					
	DATE:	9 J.1.	2019	r En			SAMPLER'	S INITIALS	: 1	2	
	WELL ID:	MW-	6	WELL DIAM	ETER (in):	2		WELL DEP	TH (ft):	· · · · · · · · · · · · · · · · · · ·	
	SCEENED L	ength (ft):					DEPTH TO	WATER (ft)	: 63	50	
)	PURGE ME	THOD:		Low flow		SAMPLING METHOD: Poly tubing					
	Sample Tir	ne:	1315	5		Sample Date: $\frac{7}{9}$					
	Stabilization Requirements										
	SC - 3% DO - 10% or	r <0.5mg/l		pH ± 0.1 Turb. 10% c		ORP ± 10mV					
	PURGE MEASUREMENTS										
	Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (µS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
	1150	T	\$.30	250	21.6	1104	1.69	6.13	933	-0.6	
	1155	2.25	\$.60	230	21-6	1046	079	6.13	939	-16.7	
	1220	4,150	4.90		21.4	1076	0.22	6.11	121	-21.4	
	1225	9.75	8.90		21.7	1076	0.21	6.11	100	-20,7	
)	1235	11.25	8.90		21.6	1072	0.30	6.13	48.0	- 21.1	
	1240	12.50	8,42		22.1	1075		6.14	35.1	-22.2	
	1250	15.00	4,94		21.5	1072	0.10	6.13	22.5	-21.5	
	1300	17.25	8.95		22,0	1074	0.11	6,14	10.4	-22,1	
	1305	14.50	8.94		21.7	1075	0.11	6.15	8.05	-22,8	
	2	· · ·	able								
		/	aure								

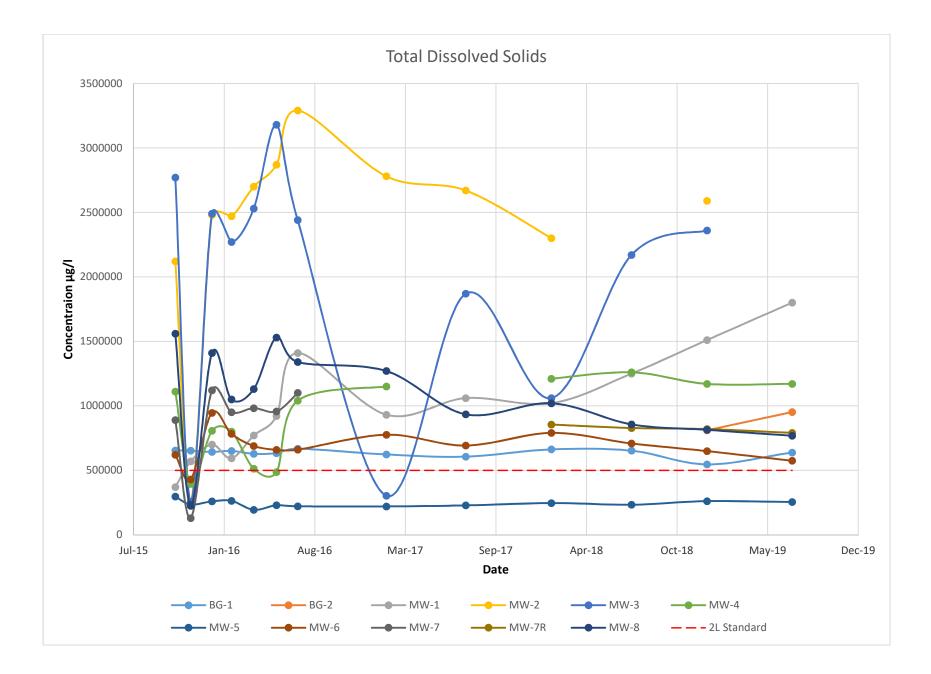
	SITE NAM	E/LOCATIC	N: Charah	Brickhave	en	PROJECT #: 237673-019					
	DATE:	10 Jul	2019	-			SAMPLER'	S INITIALS	K	1	
	WELL ID:	-7R		WELL DIAN	ETER (in):	2		WELL DEP	TH (ft):	39.94	
	SCEENED L	ength (ft):					DEPTH TO WATER (ft): 1995			25	
	PURGE ME	THOD:	Low flow				SAMPLING METHOD: Poly tubing			!	
	Sample Tir	me:	09	50			Sample Dat	te:	7/10	/19	
	1			St	abilization	Requiremer	nts				
	SC - 3%			pH ± 0.1			ORP ± 10m	v			
	DO - 10% o	r <0.5mg/L		Turb. 10% d	or <5NTU						
				F	PURGE MEA	SUREMENT	S				
	Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
	0745	0	21.49	300	20.1	1523	5.03	7.22	1000	-23.6	
	2755	3	24.20		21.2	1533	4,60	7.39	>1000	-465	
į.	0815		29.15	100	22.2	1542	4.36	7.57	93,2	-54.0	
	0425		29.50	100	23.6	1541	3,79	7.55	55.9	-54.i	
	0\$30		29.60	100	23.6	1548	4,34	7.51	123	-547	
	0345		29.70	100	25.5	1539	3.93	7.51	70.7	-54.1	
	0900		36.07		an do		stabiliz.				
	0415	38	35.88	\$ 100	25.1	1543	3.69	7.61	505	-67.9	
	0920		35.84	100	28,8	1547	2.49	7.51	233	-7-4,4	
	0945	60	35.84	100	31.5	1545	1.51	7.29	233	-73.1	
			~								
			2 hr	prac							
									~		
51											

SITE NAM	E/LOCATIO	DN: Charat	n Brickhave	en	PROJECT #: 237673-019					
DATE:	10 221	19	-			SAMPLER'	S INITIALS	: 41		• :
WELL ID:		8/	WELL DIAM	AETER (in):	2	_	WELL DEP	TH (ft): -	37.46	44.06
SCEENED L	ρυρ .ength (ft):					DEPTH TO	WATER (ft): 37,	46	e e
PURGE ME	THOD:	·	Low flow			SAMPLING METHOD:		Poly tubing		5
Sample Tir		132				Sample Da	te:	7/10	119	8
	0	UP 122		abilization	Requiremer	nte				ľ
SC - 3%			pH ± 0.1	abilization	Requiremen	ORP ± 10m				
DO - 10% of	r <0.5mg/L		Turb. 10% (or SATTU			v			
				PURGE MEA	SUREMENT	S				
Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	pН	Turbidity (NTU)	ORP (mV)	
1120	1	38.06	200	24.1	2411	4.33	7.01	233	-86.9	1
1130	3	58,18		25.3	2390	3.07	6.99	359	-80,9	1
1140	<u>5</u> 7	38.21		25.8	2326	2,73	6.49	221	-855	l.
1150	7	38.24		26.4	2070	1,96	7.02	149	-80,6	
1200	9	38.30		27.0	1987	1.69	7.01	99.0	-75.6	
1210	<u>I</u> Ú	38.31		25.6	1861	1.53	6.97	66.3	-64,5	
1220	13	38.34		26.7	1758	#\$1.20	7.00	39.2	-74.4	
1230	15	38.35		27.8	1697	0.99	7.02	29.4	-79.9	
1240	17	38,35		26.7	1641	0.92	6.97	21.8	-79.0	
1250	19	38.35		26.6	1595	0.83	6.96	56.8	707	
1300	21	38.35		26.2	1557	0.90	6.95	62,8	-63,7	
1310	23	38.35		27.8	1534	0.60	7.01	22.7	- 63.4	
14/1320		ZLCG	pular							
		v .								
							10 			- -
		4								
	·									
										-
	4									
		12								
L										

	SITE NAM	E/LOCATIC	DN: Charah	Brickhave	en		PROJECT #: 237673-019				
	DATE:	_1()~1	2019				SAMPLER'	S INITIALS	: <i>SI</i>	2	
	WELL ID:	RG-	1	WELL DIAN	ETER (in):	2		WELL DEP	ΓH (ft):	43.05	
	SCEENED L	.ength (ft):					DEPTH TO	WATER (ft)	: //.	07	
	PURGE ME	THOD:		Low flow			SAMPLING METHOD: Poly tubing				
	Sample Tir	ne:	13	00		ε.	Sample Da	te:	7/11/	19	
				St	abilization	Requiremen	nts				
	SC - 3%			pH ± 0.1			ORP ± 10m	V			
	DO - 10% oi	r <0.5mg/L		Turb. 10% d	or <5NTU						
PURGE MEASUREMENTS											
	Time	Liters Purged	Depth to Water (BTOC ft)	Flow Rate (mL/min)	Temp (C)	SC (μS/cm)	DO (mg/L)	рН	Turbidity (NTU)	ORP (mV)	
	1050		11,02	300	22.3	1081	0.52	6.41	195	-44.0	
	1110	7	11,28	300	21. V	1097	0.31	6.41	172	-60.2	
	1120	(0	12,15	200	23.2	1104	0.17	6.36	80.7	-48.5	
	1130	12	11.71	200	23,0	1109	0.16	6.37	625	-596	
	1200	18	11.50	700	22.4	1118	0.14	6.32	33.3	-48.4	
	1210	20	11.50	200	23.4	11420	0.13	634	28.1	-50.4	
	1220	22	11.49	200	23.1	1118	0.14	6.29	23.6	-41.3	
	1230	24	11.49	200	22.6	1118	0.16	6.30	14.6	-48.8	
	1240	26	11.25	200	23.8	11/4	0.16	6.32	16.9	-47.7	
	1250	28	11.10	200	23.6	1117	0.16	6.30	14.4	-466	
		-2hr	purg	2							
			• 0								
2						_					
										┝────┤	
					_						
1											
Ĵ											


SITE NAME	LOCATIO	N: Charah	Brickhave	en	PROJECT #: 237673-019					
DATE:	11 Ju,	2019				SAMPLER'	S INITIALS	: 910	2	
WELL ID:	BG-	2	WELL DIAM	ETER (in):	2		WELL DEPT	ΓΗ (ft):		
SCEENED L	ength (ft):					DEPTH TO	WATER (ft)	: 12.4	71	
PURGE MET	THOD:		Low flow		i i	SAMPLING	METHOD:	Poly tubing		
Sample Tin	ne:	#	m= 0	950						
			St	abilization	Requiremer	nts				
SC - 3%			pH ± 0.1			ORP ± 10m	V			
DO - 10% or	<0.5mg/L		Turb. 10% c							
	PURGE MEASUREMENTS									
	Liters	Depth to	Flow Rate	Temp	sc	DO		Turbidity		
Time	Purged	Water (BTOÇ ft)	(mL/min)	(C)	(µS/cm)	(mg/L)	рН	(NTU)	ORP (mV)	
0750	_ (13.55	13.58	18.2	2529	0.93	6.95	71000	-25,9	
04800	3	13.85	200	18,7	2162	0.27	6.92	954	-44.5	
0110	5	13.85		11.1	1904	0.17	6.91	525	-52.9	
0820	7	13.85		19.0	1794	0.13	6.90	228	-55.5	
0430	9	14.20		19.0	1714	0.18	6.89	77.2	-57.4	
6940	-11	1425		19.1	1707	0.19	6. 89	58.2	-57.8	
0950	13	1435		14.0	1688	0.20	6.89	55.7	-54.3	
0400	15	14.35		19.1	1671	0.22	6.89	40.5	-59.5	
0910	17	1435		19.1	1664	0.23	6.40	25.9	-60.8	
6910	19	14.35		19.1	1657	0.23	6.89	34.4	-61.3	
0930	21	14.35		19.4	1651	0.25	6.90	29.6	631	
8940	23	14.35		19.8	1650	0.25	6.91	24.1	-66.0	
0950	25	14.35		20.2	1655	0.26	6.93	25.2	-+1.0	
-	241	- purg	2							
		1								
									<u> </u>	
								1		
								1		





B

Appendix B – Concentration vs. Time Plots

Appendix C – Laboratory Reports, Chains of Custody, & Quality Control Data

FS

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

August 02, 2019

Mark Filardi HDR 440 S. Church St Suite 900 Charlotte, NC 28202

RE: Project: Charah GW Pace Project No.: 92436599

Dear Mark Filardi:

Enclosed are the analytical results for sample(s) received by the laboratory on July 12, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Starry

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Mike Plummer, HDR Jacob Ruffing

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: Charah GW Pace Project No.: 92436599

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030 North Carolina Drinking Water Certification #: 37712 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE SUMMARY

Project: Charah GW Pace Project No.: 92436599

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92436599001	BG-1	Water	07/11/19 13:00	07/12/19 12:00
92436599002	BG-2	Water	07/11/19 09:50	07/12/19 12:00
92436599003	MW-1	Water	07/10/19 17:05	07/12/19 12:00
92436599004	MW-4	Water	07/09/19 10:55	07/12/19 12:00
92436599005	MW-5	Water	07/09/19 14:50	07/12/19 12:00
92436599006	MW-6	Water	07/09/19 13:15	07/12/19 12:00
92436599007	MW-7R	Water	07/10/19 09:50	07/12/19 12:00
92436599008	MW-8	Water	07/10/19 13:25	07/12/19 12:00
92436599009	DUP	Water	07/10/19 12:20	07/12/19 12:00
92436599010	LEACHATE	Water	07/08/19 11:30	07/12/19 12:00
92436599011	EQUIPMENT BLANK	Water	07/11/19 13:30	07/12/19 12:00
92436599012	AMBIENT BLANK	Water	07/09/19 15:20	07/12/19 12:00
92436599013	SW-2	Water	07/08/19 12:15	07/12/19 12:00
92436599014	SW-1	Water	07/08/19 12:00	07/12/19 12:00
92436599015	TRIP BLANK	Water	07/08/19 11:00	07/12/19 12:00

Charah GW

Project:

Laboratory

PASI-A

PASI-A

PASI-A

PASI-C

PASI-PA

PASI-PA

PASI-PA PASI-A

PASI-A

PASI-A

PASI-A

PASI-A

PASI-C

PASI-PA PASI-PA

PASI-PA

PASI-A

PASI-A

PASI-A

PASI-A

PASI-A

PASI-C

PASI-PA

PASI-PA

PASI-PA

PASI-A

PASI-A

PASI-A

PASI-A PASI-A

PASI-C

PASI-PA

PASI-PA

PASI-PA

PASI-A

PASI-A

PASI-A

16

DS, SH1

SAMPLE ANALYTE COUNT

Lab ID	Sample ID	Method	Analysts	Analytes Reported
92436599001	BG-1	EPA 6010D		16
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		SM 2540C-2011	MJP	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
92436599002	BG-2	EPA 6010D	SH1	16
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		SM 2540C-2011	MJP	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
92436599003	MW-1	EPA 6010D	DS, SH1	16
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		SM 2540C-2011	MJP	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
92436599004	MW-4	EPA 6010D	DS, SH1	16
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		SM 2540C-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	BRJ	3

92436599005 MW-5

REPORT OF LABORATORY ANALYSIS

EPA 6010D

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Charah GW

Project:

Laboratory

PASI-A

PASI-A

PASI-C PASI-PA

PASI-PA

PASI-PA

PASI-A

PASI-A

PASI-A

PASI-A

PASI-A

PASI-C

PASI-PA

PASI-PA PASI-PA

PASI-A

PASI-A

PASI-A

PASI-A

PASI-A

PASI-C PASI-PA

PASI-PA

PASI-PA

PASI-A

PASI-A

PASI-A

PASI-A

PASI-A

PASI-C

PASI-PA

PASI-PA

PASI-PA

PASI-A

PASI-A

PASI-A

PASI-A

1

3

16

3

MJP

BRJ

DS, SH1

JOR

SAMPLE ANALYTE COUNT

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		SM 2540C-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
92436599006	MW-6	EPA 6010D	DS, SH1	16
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		SM 2540C-2011	JP1	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
2436599007	MW-7R	EPA 6010D	DS, SH1	16
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		SM 2540C-2011	MJP	1
		EPA 300.0 Rev 2.1 1993	BRJ	3
92436599008	MW-8	EPA 6010D	DS, SH1	16
		EPA 6020B	JOR	3
		EPA 7470A	JMW1	1
		EPA 8260D	SAS	48
		EPA 903.1	MK1	1
		EPA 904.0	JLW	1
		Total Radium Calculation	CMC	1
		CM 05400 0044	MID	

DUP 92436599009

REPORT OF LABORATORY ANALYSIS

SM 2540C-2011

EPA 300.0 Rev 2.1 1993

EPA 6010D

EPA 6020B

SAMPLE ANALYTE COUNT

.ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7470A	JMW1		PASI-A
		EPA 8260D	SAS	48	PASI-C
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2436599010	LEACHATE	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JOR	3	PASI-A
		EPA 7470A	JMW1	1	PASI-A
		EPA 8260D	SAS	48	PASI-C
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2436599011	EQUIPMENT BLANK	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JOR	3	PASI-A
		EPA 7470A	JMW1	1	PASI-A
		EPA 8260D	SAS	48	PASI-C
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2436599012	AMBIENT BLANK	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JOR	3	PASI-A
		EPA 7470A	JMW1	1	PASI-A
		EPA 8260D	SAS	48	PASI-C
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
2436599013	SW-2	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JOR	3	PASI-A
		EPA 7470A	JMW1	1	PASI-A

SAMPLE ANALYTE COUNT

Project: Pace Project No.	Charah GW : 92436599				
Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260D	SAS	48	PASI-C
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	JP1	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92436599014	SW-1	EPA 6010D	DS, SH1	16	PASI-A
		EPA 6020B	JOR	3	PASI-A
		EPA 7470A	JMW1	1	PASI-A
		EPA 8260D	SAS	48	PASI-C
		EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	JLW	1	PASI-PA
		Total Radium Calculation	CMC	1	PASI-PA
		SM 2540C-2011	MJP	1	PASI-A
		EPA 300.0 Rev 2.1 1993	BRJ	3	PASI-A
92436599015	TRIP BLANK	EPA 8260D	SAS	48	PASI-C

Project: Charah GW

Pace Project No.: 92436599

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92436599001	BG-1					
EPA 6010D	Barium	346	ug/L	5.0	07/18/19 03:23	
EPA 6010D	Calcium	27900	ug/L	100	07/18/19 03:23	
EPA 6010D	Molybdenum	10.8	ug/L	5.0	07/18/19 03:23	
EPA 6020B	Lithium	17.1	ug/L	2.5	07/17/19 00:44	
EPA 903.1	Radium-226	0.000 ± 0.525 (0.940) C:NA T:86%	pĊi/L		07/26/19 13:48	
EPA 904.0	Radium-228	0.823 ± 0.435 (0.787) C:81% T:76%	pCi/L		07/25/19 12:48	
Total Radium Calculation	Total Radium	0.823 ± 0.960 (1.73)	pCi/L		07/30/19 13:54	
SM 2540C-2011	Total Dissolved Solids	638	mg/L	50.0	07/16/19 14:30	
EPA 300.0 Rev 2.1 1993	Chloride	228	mg/L	5.0	07/14/19 00:49	
EPA 300.0 Rev 2.1 1993	Fluoride	0.18	mg/L	0.10	07/13/19 19:35	
EPA 300.0 Rev 2.1 1993	Sulfate	20.6	mg/L	1.0	07/13/19 19:35	
92436599002	BG-2					
EPA 6010D	Barium	108	ug/L	5.0	07/18/19 03:26	
EPA 6010D	Calcium	111000	ug/L	500	07/19/19 02:09	
EPA 6010D	Molybdenum	11.3	ug/L	5.0	07/18/19 03:26	
EPA 6020B	Lithium	14.9	ug/L	5.0	07/17/19 01:20	
EPA 903.1	Radium-226	0.247 ± 0.625 (1.03) C:NA T:87%	pĊi/L		07/26/19 13:48	
EPA 904.0	Radium-228	0.205 ± 0.329 (0.715) C:81% T:83%	pCi/L		07/25/19 12:48	
Total Radium Calculation	Total Radium	0.452 ± 0.954 (1.75)	pCi/L		07/30/19 13:54	
SM 2540C-2011	Total Dissolved Solids	952	mg/L	50.0	07/16/19 14:31	
EPA 300.0 Rev 2.1 1993	Chloride	234	mg/L	5.0	07/14/19 01:03	
EPA 300.0 Rev 2.1 1993	Fluoride	0.19	mg/L	0.10	07/13/19 19:50	
EPA 300.0 Rev 2.1 1993	Sulfate	102	mg/L	5.0	07/14/19 01:03	
92436599003	MW-1					
EPA 6010D	Barium	261	ug/L	5.0	07/18/19 15:57	
EPA 6010D	Calcium	216000	ug/L	500	07/18/19 15:48	
EPA 6010D	Molybdenum	14.5	ug/L	5.0	07/18/19 03:36	
EPA 6020B	Lithium	35.6	ug/L	2.5	07/17/19 01:28	
EPA 903.1	Radium-226	1.03 ± 0.736 (0.964) C:NA T:86%	pĊi/L		07/26/19 13:48	

Project: Charah GW

Pace Project No.: 92436599

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92436599003	MW-1					
EPA 904.0	Radium-228	1.45 ± 0.478 (0.661) C:81% T:89%	pCi/L		07/25/19 12:48	
Total Radium Calculation	Total Radium	2.48 ± 1.21 (1.63)	pCi/L		07/30/19 13:54	
SM 2540C-2011	Total Dissolved Solids	1800	mg/L	50.0	07/16/19 14:15	
EPA 300.0 Rev 2.1 1993	Chloride	855	mg/L	18.0	07/14/19 01:18	M6
EPA 300.0 Rev 2.1 1993	Fluoride	0.17	mg/L	0.10	07/13/19 20:04	
EPA 300.0 Rev 2.1 1993	Sulfate	7.2	mg/L	1.0	07/13/19 20:04	
92436599004	MW-4					
EPA 6010D	Barium	319	ug/L	5.0	07/18/19 16:00	
EPA 6010D	Calcium	69400	ug/L	100	07/18/19 03:39	
EPA 6010D	Molybdenum	18.7	ug/L	5.0	07/18/19 03:39	
EPA 6010D	Nickel	5.1	ug/L	5.0	07/18/19 03:39	
EPA 6020B	Lithium	26.8	ug/L	2.5	07/17/19 01:36	
EPA 903.1	Radium-226	0.760 ±	pCi/L		07/26/19 13:48	
		0.551 (0.714)				
		C:NA T:94%				
EPA 904.0	Radium-228	0.556 ±	pCi/L		07/25/19 12:49	
		0.380				
		(0.734)				
		C:82% T:79%				
Total Radium Calculation	Total Radium	1.79% 1.32 ±	pCi/L		07/30/19 13:54	
		0.931	pol/L		07/30/13 13.34	
		(1.45)				
SM 2540C-2011	Total Dissolved Solids	1170	mg/L	50.0	07/13/19 00:39	
EPA 300.0 Rev 2.1 1993	Chloride	467	mg/L	10.0	07/14/19 02:02	
EPA 300.0 Rev 2.1 1993	Fluoride	0.34	mg/L	0.10	07/13/19 20:49	
EPA 300.0 Rev 2.1 1993	Sulfate	11.2	mg/L	1.0	07/13/19 20:49	
92436599005	MW-5					
EPA 6010D	Barium	153	ug/L	5.0	07/18/19 16:03	
EPA 6010D	Calcium	14300	ug/L	100	07/18/19 03:42	
EPA 6010D	Copper	5.6	ug/L	5.0	07/18/19 03:42	
EPA 6010D	Zinc	11.4	ug/L	10.0	07/18/19 03:42	
EPA 6020B	Lithium	11.6	ug/L	2.5	07/17/19 01:44	
EPA 903.1	Radium-226	-0.0968 ±	pCi/L		07/26/19 13:48	
		0.718 (1.28) C:NA T:77%				
EPA 904.0	Radium-228	0.987 ±	pCi/L		07/25/19 12:49	
		0.440	F = " =			
		(0.737)				
		C:80%				
Total Radium Calculation	Total Badium	T:80% 0.987 ±	nC://		07/20/10 12.54	
Total Radium Calculation	Total Radium	1.16 (2.02)	pCi/L		07/30/19 13:54	
SM 2540C-2011	Total Dissolved Solids	254	mg/L	25.0	07/13/19 00:39	

Project: Charah GW

Pace Project No.: 92436599

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92436599005	 MW-5				· ·	
EPA 300.0 Rev 2.1 1993	Chloride	22.3	mg/L	1.0	07/13/19 21:04	
EPA 300.0 Rev 2.1 1993	Fluoride	0.60	mg/L	0.10	07/13/19 21:04	
EPA 300.0 Rev 2.1 1993	Sulfate	3.5	mg/L	1.0	07/13/19 21:04	
92436599006	MW-6		-			
EPA 6010D	Barium	47.8	ug/L	5.0	07/18/19 16:06	
EPA 6010D	Calcium	37800	ug/L	100	07/18/19 03:45	
EPA 6010D	Copper	5.5	ug/L	5.0	07/18/19 03:45	
EPA 6010D	Molybdenum	8.3	ug/L	5.0	07/18/19 03:45	
EPA 6020B	Lithium	22.7	ug/L	2.5	07/17/19 01:52	
EPA 903.1	Radium-226	0.681 ±	pČi/L		07/26/19 13:48	
		0.785				
		(1.17) C:NA				
554 004 0		T:87%	- O' //		07/05/40 45 54	
EPA 904.0	Radium-228	0.685 ± 0.444	pCi/L		07/25/19 15:54	
		(0.850)				
		C:80%				
		T:80%				
Total Radium Calculation	Total Radium	1.37 ± 1.23	pCi/L		07/30/19 13:54	
014 05 400 0044	Tatal Disaster d Oslida	(2.02)		50.0	07/40/40 00 00	
SM 2540C-2011	Total Dissolved Solids	574	mg/L	50.0	07/13/19 00:39	
EPA 300.0 Rev 2.1 1993	Chloride	208	mg/L	4.0	07/14/19 02:17	
EPA 300.0 Rev 2.1 1993	Fluoride	0.38	mg/L	0.10	07/13/19 21:49	
EPA 300.0 Rev 2.1 1993	Sulfate	25.8	mg/L	1.0	07/13/19 21:49	
92436599007	MW-7R					
EPA 6010D	Antimony	13.6	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Barium	395	ug/L	5.0	07/18/19 16:21	
EPA 6010D	Calcium	102000	ug/L	500	07/18/19 16:18	
EPA 6010D	Chromium	1940	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Cobalt	20.4	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Copper	79.3	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Lead	6.8	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Molybdenum	49.5	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Nickel	880	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Vanadium	18.8	ug/L	5.0	07/18/19 03:58	
EPA 6010D	Zinc	53.4	ug/L	10.0	07/18/19 03:58	
EPA 6020B	Lithium	31.7	ug/L	2.5	07/17/19 02:00	
EPA 903.1	Radium-226	0.316 ±	pCi/L		07/26/19 14:06	
		0.650 (1.05) C:NA				
		(1.05) C.NA T:81%				
EPA 904.0	Radium-228	0.686 ±	pCi/L		07/25/19 15:55	
		0.424				
		(0.803)				
		C:78%				
Total Dadium Calculation	Total Dadium	T:86% 1.00 ± 1.07	»C://		07/20/40 42-54	
Total Radium Calculation	Total Radium	1.00 ± 1.07 (1.85)	pCi/L		07/30/19 13:54	
SM 2540C-2011	Total Dissolved Solids	(1.03) 790	mg/L	50.0	07/16/19 14:15	
2 20100 2011		700	<u>9</u> , ∟	00.0	0.710/10/14.10	

Project: Charah GW

Pace Project No.: 92436599

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92436599007	MW-7R					
EPA 300.0 Rev 2.1 1993	Chloride	275	mg/L	6.0	07/14/19 02:32	
EPA 300.0 Rev 2.1 1993	Fluoride	0.12	mg/L	0.10	07/13/19 22:05	
EPA 300.0 Rev 2.1 1993	Sulfate	16.8	mg/L	1.0	07/13/19 22:05	
92436599008	MW-8					
EPA 6010D	Barium	976	ug/L	5.0	07/18/19 16:33	
EPA 6010D	Calcium	94600	ug/L	500	07/18/19 16:24	
EPA 6010D	Molybdenum	5.2	ug/L	5.0	07/18/19 04:01	
EPA 6020B	Lithium	21.1	ug/L	2.5	07/17/19 02:08	
EPA 903.1	Radium-226	0.105 ± 0.507 (0.871)	pCi/L		07/26/19 14:06	
		C:NA T:91%				
EPA 904.0	Radium-228	0.535 ±	pCi/L		07/25/19 15:55	
		0.389				
		(0.762) C:81%				
		T:85%				
Total Radium Calculation	Total Radium	0.640 ±	pCi/L		07/30/19 13:54	
		0.896				
		(1.63)				
SM 2540C-2011	Total Dissolved Solids	768	mg/L	50.0	07/16/19 14:15	
EPA 300.0 Rev 2.1 1993	Chloride	309	mg/L	7.0	07/14/19 02:47	
EPA 300.0 Rev 2.1 1993	Sulfate	7.5	mg/L	1.0	07/13/19 22:20	
92436599009	DUP					
EPA 6010D	Barium	992	ug/L	5.0	07/18/19 16:39	
EPA 6010D	Calcium	98000	ug/L	500	07/18/19 16:36	
EPA 6010D	Molybdenum	5.4	ug/L	5.0	07/18/19 04:04	
EPA 6020B	Lithium	21.8	ug/L	2.5	07/17/19 02:15	
EPA 903.1	Radium-226	0.280 ±	pCi/L		07/26/19 14:06	
		0.650 (1.05) C:NA				
		(1.05) C.NA T:91%				
EPA 904.0	Radium-228	0.649 ±	pCi/L		07/25/19 15:55	
		0.430				
		(0.826)				
		C:82%				
Total Radium Calculation	Total Radium	T:77% 0.929 ±	nCi/l		07/30/19 13:54	
Total Radium Calculation		1.08 (1.88)	pCi/L		07/30/19 13.34	
SM 2540C-2011	Total Dissolved Solids	792	mg/L	50.0	07/16/19 14:18	
EPA 300.0 Rev 2.1 1993	Chloride	312	mg/L	7.0	07/14/19 03:01	
EPA 300.0 Rev 2.1 1993	Sulfate	7.5	mg/L	1.0	07/13/19 22:35	
92436599010	LEACHATE					
EPA 6010D	Arsenic	20.5	ug/L	10.0	07/18/19 16:45	
EPA 6010D	Barium	76.9	ug/L	5.0	07/18/19 16:45	
EPA 6010D	Calcium	310000	ug/L	500	07/18/19 16:42	
EPA 6010D	Molybdenum	248	ug/L	5.0	07/18/19 04:13	
EPA 6010D	Nickel	9.1	ug/L	5.0	07/18/19 04:13	
EPA 6020B	Boron	3250	ug/L	300	07/17/19 02:23	

Project: Charah GW

Pace Project No.:	92436599
-------------------	----------

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92436599010	LEACHATE					
EPA 6020B	Lithium	51.2	ug/L	30.0	07/17/19 02:23	
EPA 903.1	Radium-226	0.458 ±	pČi/L		07/26/19 14:06	
		0.554				
		(0.832) C:NA T:96%				
EPA 904.0	Radium-228	0.517 ±	pCi/L		07/25/19 15:55	
		0.391	P 0 " =		0172071010100	
		(0.771)				
		C:79% T:84%				
Total Radium Calculation	Total Radium	0.975 ±	pCi/L		07/30/19 13:54	
		0.945	·			
CM 05400 0044	Total Dissalus d Calida	(1.60)		50.0	07/40/40 00:00	DC
SM 2540C-2011 EPA 300.0 Rev 2.1 1993	Total Dissolved Solids Chloride	1490 18.3	mg/L	50.0 1.0	07/13/19 00:38 07/13/19 22:50	D6
EPA 300.0 Rev 2.1 1993 EPA 300.0 Rev 2.1 1993	Fluoride	0.22	mg/L mg/L	0.10		
EPA 300.0 Rev 2.1 1993	Sulfate	592	mg/L	13.0		
92436599011		002			0171 1710 0 1101	
		-0.0338 ±	- C://		07/00/40 44:00	
EPA 903.1	Radium-226	-0.0338 ± 0.672	pCi/L		07/26/19 14:06	
		(1.20) C:NA				
		T:82%				
EPA 904.0	Radium-228	0.557 ± 0.396	pCi/L		07/25/19 15:55	
		(0.772)				
		C:78%				
		T:85%	0.1		07/00/40 40 55	
Total Radium Calculation	Total Radium	0.557 ± 1.07 (1.97)	pCi/L		07/30/19 13:55	
92436599012	AMBIENT BLANK					
EPA 903.1	Radium-226	0.459 ±	pCi/L		07/26/19 14:06	
		0.374				
		(0.454) C:NA T:93%				
EPA 904.0	Radium-228	0.403 ±	pCi/L		07/25/19 15:55	
		0.387	·			
		(0.795)				
		C:79% T:83%				
Total Radium Calculation	Total Radium	0.862 ±	pCi/L		07/30/19 13:55	
		0.761	·			
		(1.25)				
92436599013	SW-2					
EPA 6010D	Barium	81.0	ug/L		07/18/19 16:54	
EPA 6010D	Calcium	35400	ug/L		07/18/19 04:23	
EPA 6020B	Boron Bodium 226	40.5 1 04 ±	ug/L	25.0	07/17/19 02:51	
EPA 903.1	Radium-226	1.04 ± 0.655	pCi/L		07/26/19 14:06	
		(0.745)				
		C:NA T:73%				

Project: Charah GW

Pace Project No.: 92436599

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92436599013	SW-2					
EPA 904.0	Radium-228	0.658 ± 0.466 (0.908) C:79% T:71%	pCi/L		07/25/19 15:55	
Total Radium Calculation	Total Radium	1.70 ± 1.12 (1.65)	pCi/L		07/30/19 13:55	
SM 2540C-2011	Total Dissolved Solids	225	mg/L	25.0	07/13/19 00:38	
EPA 300.0 Rev 2.1 1993	Chloride	50.2	mg/L	1.0	07/13/19 21:19	M1
EPA 300.0 Rev 2.1 1993	Fluoride	0.16	mg/L	0.10	07/13/19 21:19	
EPA 300.0 Rev 2.1 1993	Sulfate	47.0	mg/L	1.0	07/13/19 21:19	
92436599014	SW-1					
EPA 6010D	Arsenic	10.6	ug/L	10.0	07/18/19 16:57	
EPA 6010D	Barium	737	ug/L	5.0	07/18/19 16:57	
EPA 6010D	Beryllium	1.3	ug/L	1.0	07/18/19 16:57	
EPA 6010D	Calcium	11400	ug/L	100	07/18/19 04:26	
EPA 6010D	Chromium	16.3	ug/L	5.0	07/18/19 04:26	
EPA 6010D	Cobalt	13.8	ug/L	5.0	07/18/19 04:26	
EPA 6010D	Copper	22.5	ug/L	5.0	07/18/19 04:26	
EPA 6010D	Lead	46.3	ug/L	5.0	07/18/19 04:26	
EPA 6010D	Nickel	12.0	ug/L	5.0	07/18/19 04:26	
EPA 6010D	Vanadium	78.1	ug/L	5.0	07/18/19 04:26	
EPA 6010D	Zinc	83.5	ug/L	10.0	07/18/19 04:26	
EPA 6020B	Lithium	13.2	ug/L	12.5	07/17/19 22:37	
EPA 6020B	Thallium	0.19	ug/L	0.10	07/17/19 02:55	
EPA 903.1	Radium-226	2.08 ± 1.05 (0.352) C:NA T:86%	pCi/L		07/26/19 14:06	
EPA 904.0	Radium-228	1.96 ± 0.838 (1.38) C:81% T:57%	pCi/L		07/25/19 15:55	
Total Radium Calculation	Total Radium	4.04 ± 1.89 (1.73)	pCi/L		07/30/19 13:55	
SM 2540C-2011	Total Dissolved Solids	1090	mg/L	25.0	07/13/19 00:38	
EPA 300.0 Rev 2.1 1993	Chloride	7.8	mg/L	1.0	07/13/19 22:32	
EPA 300.0 Rev 2.1 1993	Fluoride	0.25	mg/L	0.10	07/13/19 22:32	
EPA 300.0 Rev 2.1 1993	Sulfate	21.6	mg/L	1.0	07/13/19 22:32	

Project: Charah GW

Pace Project No.: 92436599

Sample: BG-1	Lab ID: 924	36599001	Collected: 07/11/1	9 13:00	Received: 07	7/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:23	7440-38-2	
Barium	346	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:23	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:23	7440-43-9	
Calcium	27900	ug/L	100	1	07/17/19 16:36	07/18/19 03:23	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7439-92-1	
Molybdenum	10.8	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:23	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:23	7440-22-4	
Vanadium	ND	ug/L	5.0	1		07/18/19 03:23		
Zinc	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:23	7440-66-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	07/15/19 22:55	07/17/19 00:44	7440-42-8	
Lithium	17.1	ug/L	2.5	1		07/17/19 00:44		
Thallium	ND	ug/L	0.10	1		07/17/19 00:44		
7470 Mercury			170A Preparation Me			01/11/10 00.44	1440 20 0	
Mercury	ND	ug/L	0.20	1		07/16/19 10:34	7439-97-6	
		•			07/10/10 00.44	01/10/13 10:54	1400 01 0	
8260D MSV Low Level Landfill	Analytical Meth					07/10/10 11 54	07.04.4	
Acetone	ND	ug/L	25.0	1		07/13/19 14:51		
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 14:51		
Benzene	ND	ug/L	1.0	1		07/13/19 14:51		
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 14:51		
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 14:51		
Bromoform	ND	ug/L	1.0	1		07/13/19 14:51		
Bromomethane	ND	ug/L	2.0	1		07/13/19 14:51		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 14:51		
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 14:51		
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 14:51		
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 14:51		
Chloroethane	ND	ug/L	1.0	1		07/13/19 14:51		
Chloroform	ND	ug/L	5.0	1		07/13/19 14:51		
Chloromethane	ND	ug/L	1.0	1		07/13/19 14:51		
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 14:51		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 14:51		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 14:51		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 14:51		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 14:51		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 14:51	75-34-3	

Project: Charah GW

Pace Project No.: 92436599

Sample: BG-1	Lab ID: 924	36599001	Collected: 07/11/1	9 13:00	Received: 0	7/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 14:51	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 14:51	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 14:51	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 14:51	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 14:51	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 14:51	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 14:51	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 14:51	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 14:51	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 14:51	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 14:51	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 14:51		
Styrene	ND	ug/L	1.0	1		07/13/19 14:51	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 14:51	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 14:51	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 14:51	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 14:51	108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 14:51	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 14:51	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/13/19 14:51	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 14:51	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 14:51	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 14:51		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 14:51	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 14:51		
Surrogates		- <u>5</u> –		-				
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 14:51	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1		07/13/19 14:51	17060-07-0	
Toluene-d8 (S)	97	%	70-130	1		07/13/19 14:51	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	638	mg/L	50.0	1		07/16/19 14:30		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	228	mg/L	5.0	5		07/14/19 00:49	16887-00-6	
Fluoride	0.18	mg/L	0.10	1		07/13/19 19:35	16984-48-8	
Sulfate	20.6	mg/L	1.0	1		07/13/19 19:35	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: BG-2	Lab ID: 924	36599002	Collected: 07/11/1	9 09:50	Received: 07	/12/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	hod: EPA 60	10D Preparation Me	thod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:26	7440-38-2	
Barium	108	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:26	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:26	7440-43-9	
Calcium	111000	ug/L	500	5	07/17/19 16:36	07/19/19 02:09	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7439-92-1	
Molybdenum	11.3	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:26	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-22-4	
Vanadium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:26	7440-62-2	
Zinc	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:26	7440-66-6	
6020 MET ICPMS	Analytical Mether	-	20B Preparation Me	thod: E	PA 3010A			
Deren			50.0	0	07/46/40 00.66	07/17/19 01:20	7440 40 0	D 2
Boron	ND	ug/L	50.0	2				D3
Lithium	14.9 ND	ug/L	5.0	2		07/17/19 01:20 07/17/19 01:20		D 2
Thallium		ug/L	0.20	2		07/17/19 01:20	7440-28-0	D3
7470 Mercury	Analytical Mether	hod: EPA 74	70A Preparation Me	thod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 10:36	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	hod: EPA 82	60D					
Acetone	ND	ug/L	25.0	1		07/13/19 15:09	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 15:09	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 15:09	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 15:09	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 15:09	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 15:09	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 15:09	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 15:09	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 15:09	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 15:09	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 15:09	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 15:09	75-00-3	
Chloroform	ND	ug/L	5.0	1		07/13/19 15:09	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 15:09	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 15:09	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		07/13/19 15:09		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 15:09		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 15:09		
-		-						
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 15:09	110-57-6	

Project: Charah GW

Pace Project No.: 92436599

Sample: BG-2	Lab ID: 92436599002		Collected: 07/11/1	Collected: 07/11/19 09:50		Received: 07/12/19 12:00 Matrix			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D						
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 15:09	107-06-2		
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:09	75-35-4		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:09	156-59-2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:09	156-60-5		
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 15:09	78-87-5		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 15:09	10061-01-5		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 15:09	10061-02-6		
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 15:09	100-41-4		
2-Hexanone	ND	ug/L	5.0	1		07/13/19 15:09	591-78-6		
lodomethane	ND	ug/L	20.0	1		07/13/19 15:09	74-88-4	v1	
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 15:09	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 15:09			
Styrene	ND	ug/L	1.0	1		07/13/19 15:09	100-42-5		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 15:09			
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 15:09	79-34-5		
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 15:09	127-18-4		
Toluene	ND	ug/L	1.0	1		07/13/19 15:09	108-88-3		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 15:09	71-55-6		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 15:09	79-00-5		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 15:09	79-01-6		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 15:09	75-69-4		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 15:09	96-18-4		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 15:09			
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 15:09	75-01-4		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 15:09			
Surrogates		- 9 -		-					
4-Bromofluorobenzene (S)	99	%	70-130	1		07/13/19 15:09	460-00-4		
1,2-Dichloroethane-d4 (S)	106	%	70-130	1		07/13/19 15:09	17060-07-0		
Toluene-d8 (S)	97	%	70-130	1		07/13/19 15:09	2037-26-5		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011						
Total Dissolved Solids	952	mg/L	50.0	1		07/16/19 14:31			
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Rev 2.1 1993						
Chloride	234	mg/L	5.0	5		07/14/19 01:03	16887-00-6		
Fluoride	0.19	mg/L	0.10	1		07/13/19 19:50	16984-48-8		
Sulfate	102	mg/L	5.0	5		07/14/19 01:03			

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-1	Lab ID: 924	36599003	Collected: 07/10/1	9 17:05	Received: 07	7/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:36	7440-38-2	
Barium	261	ug/L	5.0	1	07/17/19 16:36	07/18/19 15:57	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 15:57	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:36	7440-43-9	
Calcium	216000	ug/L	500	5	07/17/19 16:36	07/18/19 15:48	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7439-92-1	
Molybdenum	14.5	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:36	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:36	7440-22-4	
Vanadium	ND	ug/L	5.0	1		07/18/19 03:36		
Zinc	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:36	7440-66-6	
6020 MET ICPMS	Analytical Meth	-	20B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	25.0	1	07/15/10 22:55	07/17/19 01:28	7440-42-8	
Lithium	35.6	ug/L	2.5	1		07/17/19 01:28		
Thallium	33.0 ND	ug/L	0.10	1		07/17/19 01:28		
7470 Mercury		-	170A Preparation Me			01/11/13 01.20	1440 20 0	
Mercury	ND	ug/L	0.20	1		07/16/19 10:38	7420 07 6	
		-		I	07/15/19 09.44	07/10/19 10.30	1439-91-0	
8260D MSV Low Level Landfill	Analytical Meth							
Acetone	ND	ug/L	25.0	1		07/13/19 15:27		
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 15:27		
Benzene	ND	ug/L	1.0	1		07/13/19 15:27		
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 15:27		
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 15:27		
Bromoform	ND	ug/L	1.0	1		07/13/19 15:27		
Bromomethane	ND	ug/L	2.0	1		07/13/19 15:27		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 15:27		
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 15:27		
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 15:27		
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 15:27		
Chloroethane	ND	ug/L	1.0	1		07/13/19 15:27		
Chloroform	ND	ug/L	5.0	1		07/13/19 15:27		
Chloromethane	ND	ug/L	1.0	1		07/13/19 15:27		
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 15:27		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 15:27		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 15:27	95-50-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 15:27	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 15:27	110-57-6	
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 15:27	75-34-3	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-1	Lab ID: 92436599003		Collected: 07/10/1	Collected: 07/10/19 17:05		7/12/19 12:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 15:27	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:27	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:27	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:27	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 15:27	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 15:27	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 15:27	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 15:27	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 15:27	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 15:27	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 15:27	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 15:27	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 15:27	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 15:27	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 15:27	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 15:27	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 15:27		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 15:27	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 15:27		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 15:27	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 15:27		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 15:27		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 15:27	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 15:27		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 15:27		
Surrogates		- 9 -						
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 15:27	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1		07/13/19 15:27	17060-07-0	
Toluene-d8 (S)	97	%	70-130	1		07/13/19 15:27	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	1800	mg/L	50.0	1		07/16/19 14:15		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Rev 2.1 1993					
Chloride	855	mg/L	18.0	18		07/14/19 01:18	16887-00-6	M6
Fluoride	0.17	mg/L	0.10	1		07/13/19 20:04	16984-48-8	
Sulfate	7.2	mg/L	1.0	1		07/13/19 20:04	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-4	Lab ID: 924	36599004	Collected: 07/09/1	9 10:55	Received: 07	7/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	thod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:39	7440-38-2	
Barium	319	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:00	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:00	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:39	7440-43-9	
Calcium	69400	ug/L	100	1	07/17/19 16:36	07/18/19 03:39	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7439-92-1	
Molybdenum	18.7	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7439-98-7	
Nickel	5.1	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:39	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:39	7440-22-4	
Vanadium	ND	ug/L	5.0	1		07/18/19 03:39		
Zinc	ND	ug/L	10.0	1		07/18/19 03:39		
6020 MET ICPMS		-	20B Preparation Me					
	-					07/17/10 01 00	7440 40 0	
Boron	ND	ug/L	25.0	1		07/17/19 01:36		
Lithium	26.8	ug/L	2.5	1		07/17/19 01:36		
Thallium	ND	ug/L	0.10	1	07/15/19 22:55	07/17/19 01:36	7440-28-0	
7470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation Me	thod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 10:41	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 15:44	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 15:44	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 15:44	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 15:44	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 15:44	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 15:44	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 15:44	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 15:44	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 15:44	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 15:44	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 15:44		
Chloroethane	ND	ug/L	1.0	1		07/13/19 15:44		
Chloroform	ND	ug/L	5.0	1		07/13/19 15:44		
Chloromethane	ND	ug/L	1.0	1		07/13/19 15:44		
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 15:44		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 15:44		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 15:44		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 15:44		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 15:44		
1,1-Dichloroethane	ND	ug/∟ ug/L	1.0	1		07/13/19 15:44		
	ND	ug/L	1.0	I		07/13/19 13.44	10-04-0	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-4	Lab ID: 92436599004		Collected: 07/09/19 10:55		Received: 0	Aatrix: Water	ter	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 15:44	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:44	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:44	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 15:44	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 15:44	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 15:44	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 15:44	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 15:44	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 15:44	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 15:44	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 15:44	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 15:44	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 15:44	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 15:44	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 15:44	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 15:44	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 15:44		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 15:44	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 15:44		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 15:44		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 15:44		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 15:44		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 15:44		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 15:44		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 15:44		
Surrogates		~9/ _		•				
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 15:44	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130	1		07/13/19 15:44	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		07/13/19 15:44	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	1170	mg/L	50.0	1		07/13/19 00:39		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	467	mg/L	10.0	10		07/14/19 02:02	16887-00-6	
Fluoride	0.34	mg/L	0.10	1		07/13/19 20:49	16984-48-8	
Sulfate	11.2	mg/L	1.0	1		07/13/19 20:49	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

		6599005	Collected: 07/09/1	19 14:50	Received: 07	/12/19/12:00	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 60	10D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:42	7440-38-2	
Barium	153	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:03	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:03	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:42	7440-43-9	
Calcium	14300	ug/L	100	1	07/17/19 16:36	07/18/19 03:42	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7440-48-4	
Copper	5.6	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:42	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7440-22-4	
Vanadium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:42	7440-62-2	
Zinc	11.4	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:42	7440-66-6	
6020 MET ICPMS	Analytical Meth	od: EPA 60	20B Preparation Me	ethod: E	PA 3010A			
Boron	ND	ug/L	125	5	07/15/19 22:55	07/17/19 22:05	7440-42-8	D3
Lithium	11.6	ug/L	2.5	1		07/17/19 01:44		-
Thallium	ND	ug/L	0.10	1		07/17/19 01:44		
7470 Mercury	Analytical Meth	od: EPA 74	70A Preparation Me	ethod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 10:43	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	od: EPA 82	60D					
Acetone	ND	ug/L	25.0	1		07/13/19 16:02	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 16:02	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 16:02	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 16:02	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 16:02	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 16:02	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 16:02	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 16:02	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 16:02	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 16:02	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 16:02	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 16:02	75-00-3	
Chloroform	ND	ug/L	5.0	1		07/13/19 16:02	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 16:02	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 16:02	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		07/13/19 16:02	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:02	95-50-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:02	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 16:02	110-57-6	
1.1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:02	75-34-3	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-5	Lab ID: 92436599005		Collected: 07/09/1	9 14:50	Received: 0	Aatrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:02	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:02	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:02	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:02	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 16:02	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:02	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:02	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 16:02	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 16:02	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 16:02	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 16:02	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 16:02	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 16:02	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:02	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:02	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 16:02	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 16:02		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:02	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:02		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 16:02		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 16:02		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 16:02		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 16:02		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 16:02		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 16:02		
Surrogates		~9/ _		•		0.7.07.07.00	1000 20 1	
4-Bromofluorobenzene (S)	98	%	70-130	1		07/13/19 16:02	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-130	1		07/13/19 16:02	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/13/19 16:02	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	254	mg/L	25.0	1		07/13/19 00:39		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	22.3	mg/L	1.0	1		07/13/19 21:04	16887-00-6	
Fluoride	0.60	mg/L	0.10	1		07/13/19 21:04	16984-48-8	
Sulfate	3.5	mg/L	1.0	1		07/13/19 21:04	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-6	Lab ID: 924	36599006	Collected: 07/09/1	9 13:15	6 Received: 07	7/12/19 12:00 M	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	thod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:45	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:45	7440-38-2	
Barium	47.8	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:06	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:06	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:45	7440-43-9	
Calcium	37800	ug/L	100	1	07/17/19 16:36	07/18/19 03:45	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:45	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:45	7440-48-4	
Copper	5.5	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:45	7440-50-8	
Lead	ND	ug/L	5.0	1		07/18/19 03:45		
Molybdenum	8.3	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:45	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:45	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:45	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:45	7440-22-4	
Vanadium	ND	ug/L	5.0	1		07/18/19 03:45		
Zinc	ND	ug/L	10.0	1		07/18/19 03:45		
6020 MET ICPMS		-	20B Preparation Me	thod: E	PA 3010A			
Deres	ND		05.0		07/45/40 00.55	07/47/40 04-50	7440 40 0	
Boron	ND	ug/L	25.0	1		07/17/19 01:52		
Lithium	22.7	ug/L	2.5	1		07/17/19 01:52		
Thallium	ND	ug/L	0.10	1		07/17/19 01:52	7440-28-0	
7470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 10:45	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 16:20	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 16:20	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 16:20	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 16:20	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 16:20	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 16:20	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 16:20	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 16:20	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 16:20	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 16:20	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 16:20	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 16:20	75-00-3	
Chloroform	ND	ug/L	5.0	1		07/13/19 16:20	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 16:20	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 16:20		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 16:20		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:20		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:20		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 16:20		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:20		

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-6	Lab ID: 92436599006		Collected: 07/09/1	9 13:15	Received: 0			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:20	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:20	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:20	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:20	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 16:20	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:20	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:20	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 16:20	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 16:20	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 16:20	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 16:20	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 16:20	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 16:20	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:20	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:20	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 16:20	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 16:20		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:20	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:20	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/13/19 16:20	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 16:20		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 16:20	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 16:20		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 16:20	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 16:20		
Surrogates		- 3 -		-				
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 16:20	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130	1		07/13/19 16:20	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		07/13/19 16:20	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	574	mg/L	50.0	1		07/13/19 00:39		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	208	mg/L	4.0	4		07/14/19 02:17	16887-00-6	
Fluoride	0.38	mg/L	0.10	1		07/13/19 21:49	16984-48-8	
Sulfate	25.8	mg/L	1.0	1		07/13/19 21:49	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-7R	Lab ID: 924	36599007	Collected: 07/10/1	9 09:50	Received: 07	7/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	13.6	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:58	7440-38-2	
Barium	395	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:21	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:21	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 03:58	7440-43-9	
Calcium	102000	ug/L	500	5	07/17/19 16:36	07/18/19 16:18	7440-70-2	
Chromium	1940	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7440-47-3	
Cobalt	20.4	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7440-48-4	
Copper	79.3	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7440-50-8	
Lead	6.8	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7439-92-1	
Molybdenum	49.5	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7439-98-7	
Nickel	880	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 03:58	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7440-22-4	
Vanadium	18.8	ug/L	5.0	1	07/17/19 16:36	07/18/19 03:58	7440-62-2	
Zinc	53.4	ug/L	10.0	1		07/18/19 03:58		
6020 MET ICPMS	Analytical Mether		020B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	125	5	07/15/19 22:55	07/17/19 22:09	7440-42-8	D3
Lithium	31.7	ug/L	2.5	1		07/17/19 02:00		20
Thallium	ND	ug/L	0.10	1		07/17/19 02:00		
7470 Mercury		-	170A Preparation Me			01/11/10 02:00	1110 20 0	
Mercury	ND	ug/L	0.20	1		07/16/19 10:48	7439-97-6	
8260D MSV Low Level Landfill	Analytical Mether	-	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 16:38	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 16:38	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 16:38		
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 16:38		
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 16:38		
Bromoform	ND	ug/L	1.0	1		07/13/19 16:38		
Bromomethane	ND	ug/L	2.0	1		07/13/19 16:38		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 16:38		. –
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 16:38		
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 16:38		
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 16:38		
Chloroethane	ND	ug/L	1.0	1		07/13/19 16:38		
Chloroform	ND	ug/L	5.0	1		07/13/19 16:38		
Chloromethane	ND	ug/L	1.0	1		07/13/19 16:38		
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 16:38		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 16:38		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:38		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:38		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 16:38		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:38		
		ug/L	1.0	1		01/10/18 10.30	10-04-0	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-7R	Lab ID: 92436599007		Collected: 07/10/1	Collected: 07/10/19 09:50		Received: 07/12/19 12:00 Matrix: \			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D						
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:38	107-06-2		
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:38	75-35-4		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:38	156-59-2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:38	156-60-5		
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 16:38	78-87-5		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:38	10061-01-5		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:38	10061-02-6		
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 16:38	100-41-4		
2-Hexanone	ND	ug/L	5.0	1		07/13/19 16:38	591-78-6		
lodomethane	ND	ug/L	20.0	1		07/13/19 16:38	74-88-4	v1	
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 16:38	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 16:38	108-10-1		
Styrene	ND	ug/L	1.0	1		07/13/19 16:38	100-42-5		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:38	630-20-6		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:38	79-34-5		
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 16:38			
Toluene	ND	ug/L	1.0	1		07/13/19 16:38			
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:38	71-55-6		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:38	79-00-5		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 16:38			
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 16:38	75-69-4		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 16:38			
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 16:38			
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 16:38			
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 16:38			
Surrogates		~g/ _		•					
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 16:38	460-00-4		
1,2-Dichloroethane-d4 (S)	107	%	70-130	1		07/13/19 16:38	17060-07-0		
Toluene-d8 (S)	99	%	70-130	1		07/13/19 16:38			
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011						
Total Dissolved Solids	790	mg/L	50.0	1		07/16/19 14:15			
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993						
Chloride	275	mg/L	6.0	6		07/14/19 02:32	16887-00-6		
Fluoride	0.12	mg/L	0.10	1		07/13/19 22:05	16984-48-8		
Sulfate	16.8	mg/L	1.0	1		07/13/19 22:05	14808-79-8		

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-8	Lab ID: 924	36599008	Collected: 07/10/1	9 13:28	5 Received: 07	7/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:01	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:01	7440-38-2	
Barium	976	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:33	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:33	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 04:01	7440-43-9	
Calcium	94600	ug/L	500	5	07/17/19 16:36	07/18/19 16:24	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:01	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:01	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:01	7440-50-8	
Lead	ND	ug/L	5.0	1		07/18/19 04:01		
Molybdenum	5.2	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:01	7439-98-7	
Nickel	ND	ug/L	5.0	1		07/18/19 04:01		
Selenium	ND	ug/L	10.0	1		07/18/19 04:01		
Silver	ND	ug/L	5.0	1		07/18/19 04:01		
Vanadium	ND	ug/L	5.0	1		07/18/19 04:01		
Zinc	ND	ug/L	10.0	1		07/18/19 04:01		
6020 MET ICPMS		-	20B Preparation Me					
	-							
Boron	ND	ug/L	125	5		07/17/19 22:13		D3
Lithium	21.1	ug/L	2.5	1		07/17/19 02:08		
Thallium	ND	ug/L	0.10	1	07/15/19 22:55	07/17/19 02:08	7440-28-0	
7470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation Me	thod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 10:50	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 16:56	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 16:56	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 16:56	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 16:56	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 16:56	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 16:56	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 16:56	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 16:56	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 16:56	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 16:56	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 16:56	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 16:56		
Chloroform	ND	ug/L	5.0	1		07/13/19 16:56	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 16:56	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 16:56		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 16:56		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:56		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 16:56		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 16:56		
		-						
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:56	75-34-3	

Project: Charah GW

Pace Project No.: 92436599

Sample: MW-8	Lab ID: 92436599008		Collected: 07/10/1	9 13:25	Received: 07/12/19 12:00 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Mether	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 16:56	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:56	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:56	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 16:56	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 16:56	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:56	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 16:56	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 16:56	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 16:56	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 16:56	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 16:56	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 16:56	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 16:56	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:56	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 16:56	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 16:56	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 16:56	108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:56	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 16:56	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/13/19 16:56		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 16:56		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 16:56		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 16:56		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 16:56		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 16:56		
Surrogates		~9/ _					1000 20 1	
4-Bromofluorobenzene (S)	98	%	70-130	1		07/13/19 16:56	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130	1		07/13/19 16:56		
Toluene-d8 (S)	99	%	70-130	1		07/13/19 16:56	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	768	mg/L	50.0	1		07/16/19 14:15		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	309	mg/L	7.0	7		07/14/19 02:47	16887-00-6	
Fluoride	ND	mg/L	0.10	1		07/13/19 22:20	16984-48-8	
Sulfate	7.5	mg/L	1.0	1		07/13/19 22:20	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: DUP	Lab ID: 924	36599009	Collected: 07/10/1	9 12:20	Received: 07	/12/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	thod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:04	7440-38-2	
Barium	992	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:39	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:39	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 04:04	7440-43-9	
Calcium	98000	ug/L	500	5	07/17/19 16:36	07/18/19 16:36	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7439-92-1	
Molybdenum	5.4	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:04	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7440-22-4	
Vanadium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:04	7440-62-2	
Zinc	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:04	7440-66-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	125	5	07/15/19 22:55	07/17/19 22:29	7440-42-8	D3
Lithium	21.8	ug/L	2.5	1		07/17/19 02:15		00
Thallium	ND	ug/L	0.10	1		07/17/19 02:15		
7470 Mercury		-	70A Preparation Me			0.7.1.7.10 02.10		
Mercury	ND	ug/L	0.20	1		07/16/19 10:57	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	-						
Acetone	, ND	ug/L	25.0	1		07/13/19 17:14	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 17:14		
Benzene	ND	ug/L	1.0	1		07/13/19 17:14		
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 17:14		
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 17:14		
Bromoform	ND	ug/L	1.0	1		07/13/19 17:14		
Bromomethane	ND	ug/L	2.0	1		07/13/19 17:14		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 17:14		٧Z
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 17:14		
		-		1				
Carbon tetrachloride Chlorobenzene	ND ND	ug/L ug/L	1.0 1.0	1		07/13/19 17:14 07/13/19 17:14		
Chloroethane	ND	ug/L	1.0	1		07/13/19 17:14		
Chloroform	ND	ug/L	5.0	1		07/13/19 17:14		
Chloromethane	ND	ug/L ug/L	5.0 1.0	1		07/13/19 17:14		
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 17:14		
Dibromomethane		-		1				
1.2-Dichlorobenzene	ND	ug/L	1.0			07/13/19 17:14 07/13/19 17:14		
1,2-Dichlorobenzene	ND	ug/L	1.0	1				
,	ND	ug/L	1.0	1		07/13/19 17:14		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 17:14		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 17:14	15-34-3	

Project: Charah GW

Pace Project No.: 92436599

Sample: DUP	Lab ID: 92436599009		Collected: 07/10/1	9 12:20	Received: 0	Aatrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 17:14	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:14	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:14	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:14	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 17:14	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 17:14	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 17:14	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 17:14	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 17:14	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 17:14	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 17:14	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 17:14	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 17:14	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 17:14	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 17:14	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 17:14	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 17:14	108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 17:14	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 17:14		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 17:14	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 17:14	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 17:14	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 17:14		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 17:14	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 17:14		
Surrogates		~9/ _		•		01710710		
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 17:14	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1		07/13/19 17:14	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/13/19 17:14	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	792	mg/L	50.0	1		07/16/19 14:18		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	312	mg/L	7.0	7		07/14/19 03:01	16887-00-6	
Fluoride	ND	mg/L	0.10	1		07/13/19 22:35	16984-48-8	
Sulfate	7.5	mg/L	1.0	1		07/13/19 22:35	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: LEACHATE	Lab ID: 924	36599010	Collected: 07/08/1	9 11:30	Received: 07	/12/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	thod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7440-36-0	
Arsenic	20.5	ug/L	10.0	1	07/17/19 16:36	07/18/19 16:45	7440-38-2	
Barium	76.9	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:45	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:45	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 04:13	7440-43-9	
Calcium	310000	ug/L	500	5	07/17/19 16:36	07/18/19 16:42	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7439-92-1	
Molybdenum	248	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7439-98-7	
Nickel	9.1	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:13	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:13	7440-22-4	
Vanadium	ND	ug/L	5.0	1		07/18/19 04:13		
Zinc	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:13	7440-66-6	
6020 MET ICPMS		-	20B Preparation Me	thod: E				
Davag	-					07/47/40 00:00	7440 40 0	
Boron	3250	ug/L	300	12		07/17/19 02:23		
Lithium	51.2	ug/L	30.0	12		07/17/19 02:23		D 2
Thallium	ND	ug/L	1.2	12		07/17/19 02:23	7440-28-0	D3
7470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation Me	thod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 11:00	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 17:32	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 17:32	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 17:32	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 17:32	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 17:32	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 17:32	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 17:32	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 17:32	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 17:32	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 17:32	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 17:32	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 17:32		
Chloroform	ND	ug/L	5.0	1		07/13/19 17:32	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 17:32	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 17:32		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 17:32		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 17:32		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 17:32		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 17:32		

Project: Charah GW

Pace Project No.: 92436599

Sample: LEACHATE	Lab ID: 92436599010		Collected: 07/08/1	9 11:30	Received: 07/12/19 12:00 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 17:32	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:32	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:32	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:32	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 17:32	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 17:32	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 17:32	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 17:32	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 17:32	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 17:32	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 17:32	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 17:32	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 17:32	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 17:32	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 17:32	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 17:32	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 17:32	108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 17:32	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 17:32	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/13/19 17:32	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 17:32	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 17:32		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 17:32	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 17:32	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 17:32	1330-20-7	
Surrogates		0						
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 17:32	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1		07/13/19 17:32	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/13/19 17:32	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	1490	mg/L	50.0	1		07/13/19 00:38		D6
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	18.3	mg/L	1.0	1		07/13/19 22:50	16887-00-6	
Fluoride	0.22	mg/L	0.10	1		07/13/19 22:50	16984-48-8	
Sulfate	592	mg/L	13.0	13		07/14/19 04:01	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: EQUIPMENT BLANK	Lab ID: 924	36599011	Collected: 07/11/1	9 13:30	Received: 07	7/12/19 12:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:16	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 16:48	7440-38-2	
Barium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:48	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:48	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 04:16	7440-43-9	
Calcium	ND	ug/L	100	1	07/17/19 16:36	07/18/19 04:16	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:16	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:16	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:16	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:16	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:16	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:16	7440-02-0	
Selenium	ND	ug/L	10.0	1		07/18/19 04:16		
Silver	ND	ug/L	5.0	1		07/18/19 04:16		
Vanadium	ND	ug/L	5.0	1		07/18/19 04:16		
Zinc	ND	ug/L	10.0	1		07/18/19 04:16		
6020 MET ICPMS		-	20B Preparation Me					
	·					07/17/10 00 00	7440 40 0	
Boron	ND	ug/L	25.0	1		07/17/19 22:33		
Lithium	ND	ug/L	2.5	1		07/17/19 22:33		
Thallium	ND	ug/L	0.10	1	07/15/19 22:55	07/17/19 22:33	7440-28-0	
7470 Mercury	Analytical Meth	nod: EPA 74	170A Preparation Me	thod: El	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 11:02	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 13:03	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 13:03	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 13:03	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 13:03	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 13:03	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 13:03	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 13:03	74-83-9	v3
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 13:03	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 13:03	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 13:03	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 13:03	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 13:03	75-00-3	
Chloroform	ND	ug/L	5.0	1		07/13/19 13:03		
Chloromethane	ND	ug/L	1.0	1		07/13/19 13:03	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 13:03		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 13:03		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 13:03		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 13:03		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 13:03		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 13:03		
		-						

Project: Charah GW

Pace Project No.: 92436599

Sample: EQUIPMENT BLANK	Lab ID: 92436599011		Collected: 07/11/1	9 13:30	Received: 07/12/19 12:00 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Met	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 13:03	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:03	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:03	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:03	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 13:03	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 13:03	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 13:03	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 13:03	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 13:03	591-78-6	
Iodomethane	ND	ug/L	20.0	1		07/13/19 13:03	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 13:03	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 13:03	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 13:03	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 13:03		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 13:03		
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 13:03		
Toluene	ND	ug/L	1.0	1		07/13/19 13:03		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 13:03		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 13:03		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 13:03		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 13:03		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 13:03		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 13:03		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 13:03		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 13:03		
Surrogates						01710710100	1000 20 1	
4-Bromofluorobenzene (S)	98	%	70-130	1		07/13/19 13:03	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	70-130	1		07/13/19 13:03		
Toluene-d8 (S)	98	%	70-130	1		07/13/19 13:03	2037-26-5	
2540C Total Dissolved Solids	Analytical Metl	nod: SM 25	40C-2011					
Total Dissolved Solids	ND	mg/L	25.0	1		07/16/19 14:31		
300.0 IC Anions 28 Days	Analytical Met	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	ND	mg/L	1.0	1		07/13/19 23:05	16887-00-6	
Fluoride	ND	mg/L	0.10	1		07/13/19 23:05	16984-48-8	
Sulfate	ND	mg/L	1.0	1		07/13/19 23:05	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: AMBIENT BLANK	Lab ID: 924	36599012	Collected: 07/09/1	19 15:20	Received: 07	7/12/19 12:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	010D Preparation Me	ethod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 16:51	7440-38-2	
Barium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:51	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:51	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 04:20	7440-43-9	
Calcium	ND	ug/L	100	1	07/17/19 16:36	07/18/19 04:20	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:20	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:20	7440-22-4	
Vanadium	ND	ug/L	5.0	1		07/18/19 04:20		
Zinc	ND	ug/L	10.0	1		07/18/19 04:20		
6020 MET ICPMS		-	20B Preparation Me					
	•					07/47/40 00 47	7110 10 0	
Boron	ND	ug/L	25.0	1		07/17/19 02:47		
Lithium	ND	ug/L	2.5	1		07/17/19 02:47		
Thallium	ND	ug/L	0.10	1	07/15/19 22:55	07/17/19 02:47	7440-28-0	
7470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation Me	ethod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 11:04	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 13:21	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 13:21	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 13:21	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 13:21	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 13:21	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 13:21	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 13:21	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 13:21	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 13:21	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 13:21	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 13:21		
Chloroethane	ND	ug/L	1.0	1		07/13/19 13:21		
Chloroform	ND	ug/L	5.0	1		07/13/19 13:21	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 13:21		
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 13:21		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 13:21		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 13:21		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 13:21		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 13:21		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 13:21		
		uy/L	1.0	I		01/10/18 13.21	10-04-0	

Project: Charah GW

Pace Project No.: 92436599

Sample: AMBIENT BLANK	Lab ID: 924	36599012	Collected: 07/09/1	9 15:20	Received: 07/12/19 12:00 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 13:21	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:21	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:21	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:21	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 13:21	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 13:21	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 13:21	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 13:21	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 13:21	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 13:21	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 13:21	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 13:21	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 13:21	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 13:21	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 13:21	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 13:21	127-18-4	
Toluene	ND	ug/L	1.0	1		07/13/19 13:21	108-88-3	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 13:21	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 13:21		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 13:21		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 13:21		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 13:21	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 13:21		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 13:21		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 13:21		
Surrogates		- 9 -		-				
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 13:21	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130	1		07/13/19 13:21	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/13/19 13:21	2037-26-5	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	ND	mg/L	25.0	1		07/13/19 00:39		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	ND	mg/L	1.0	1		07/13/19 23:20	16887-00-6	
Fluoride	ND	mg/L	0.10	1		07/13/19 23:20	16984-48-8	
Sulfate	ND	mg/L	1.0	1		07/13/19 23:20	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: SW-2	Lab ID: 924	36599013	Collected: 07/08/1	9 12:1	5 Received: 07	7/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	thod: E	EPA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7440-36-0	
Arsenic	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 16:54	7440-38-2	
Barium	81.0	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:54	7440-39-3	
Beryllium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:54	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 04:23	7440-43-9	
Calcium	35400	ug/L	100	1	07/17/19 16:36	07/18/19 04:23	7440-70-2	
Chromium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7440-47-3	
Cobalt	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7440-48-4	
Copper	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7440-50-8	
Lead	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7439-98-7	
Nickel	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:23	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7440-22-4	
Vanadium	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:23	7440-62-2	
Zinc	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:23	7440-66-6	
6020 MET ICPMS		•	20B Preparation Me	thod: E				
Deren	40 E		25.0	4	07/16/10 22.66	07/17/10 00.51	7440 42 9	
Boron Lithium	40.5	ug/L	25.0 2.5	1		07/17/19 02:51 07/17/19 02:51		
Thallium	ND ND	ug/L	2.5 0.10	1 1		07/17/19 02:51		
		ug/L				07/17/19 02.51	7440-20-0	
7470 Mercury	Analytical Metr	100: EPA 74	70A Preparation Me	thoa: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 11:07	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	60D					
Acetone	ND	ug/L	25.0	1		07/13/19 17:50	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 17:50	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 17:50	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 17:50	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 17:50	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 17:50	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 17:50	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 17:50	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 17:50	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 17:50	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 17:50	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 17:50	75-00-3	
Chloroform	ND	ug/L	5.0	1		07/13/19 17:50	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 17:50	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 17:50	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		07/13/19 17:50		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 17:50		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 17:50		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 17:50		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 17:50		
.,		~9/ L	1.0	•				

Project: Charah GW

Pace Project No.: 92436599

Sample: SW-2	Lab ID: 924	36599013	Collected: 07/08/1	9 12:15	Received: 0	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 17:50	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:50	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:50	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 17:50	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 17:50	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 17:50	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 17:50	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 17:50	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 17:50	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 17:50	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 17:50	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 17:50	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 17:50	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 17:50	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 17:50		
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 17:50		
Toluene	ND	ug/L	1.0	1		07/13/19 17:50		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 17:50		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 17:50		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 17:50		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 17:50		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 17:50		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 17:50		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 17:50		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 17:50		
Surrogates		~9/ _					1000 20 1	
4-Bromofluorobenzene (S)	97	%	70-130	1		07/13/19 17:50	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130	1		07/13/19 17:50	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		07/13/19 17:50		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	225	mg/L	25.0	1		07/13/19 00:38		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	00.0 Rev 2.1 1993					
Chloride	50.2	mg/L	1.0	1		07/13/19 21:19	16887-00-6	M1
Fluoride	0.16	mg/L	0.10	1		07/13/19 21:19	16984-48-8	
Sulfate	47.0	mg/L	1.0	1		07/13/19 21:19	14808-79-8	

Project: Charah GW

Pace Project No.: 92436599

Sample: SW-1	Lab ID: 9243	36599014	Collected: 07/08/1	9 12:00) Received: 07	/12/19 12:00 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	thod: E	PA 3010A			
Antimony	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7440-36-0	
Arsenic	10.6	ug/L	10.0	1	07/17/19 16:36	07/18/19 16:57	7440-38-2	
Barium	737	ug/L	5.0	1	07/17/19 16:36	07/18/19 16:57	7440-39-3	
Beryllium	1.3	ug/L	1.0	1	07/17/19 16:36	07/18/19 16:57	7440-41-7	
Cadmium	ND	ug/L	1.0	1	07/17/19 16:36	07/18/19 04:26	7440-43-9	
Calcium	11400	ug/L	100	1	07/17/19 16:36	07/18/19 04:26	7440-70-2	
Chromium	16.3	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7440-47-3	
Cobalt	13.8	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7440-48-4	
Copper	22.5	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7440-50-8	
Lead	46.3	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7439-92-1	
Molybdenum	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7439-98-7	
Nickel	12.0	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7440-02-0	
Selenium	ND	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:26	7782-49-2	
Silver	ND	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7440-22-4	
Vanadium	78.1	ug/L	5.0	1	07/17/19 16:36	07/18/19 04:26	7440-62-2	
Zinc	83.5	ug/L	10.0	1	07/17/19 16:36	07/18/19 04:26	7440-66-6	
6020 MET ICPMS	Analytical Meth	nod: EPA 60	20B Preparation Me	thod: E	PA 3010A			
Boron	ND	ug/L	125	5	07/15/19 22:55	07/17/19 22:37	7440-42-8	D3
Lithium	13.2	ug/L	12.5	5	07/15/19 22:55	07/17/19 22:37	7439-93-2	
Thallium	0.19	ug/L	0.10	1	07/15/19 22:55	07/17/19 02:55	7440-28-0	
7470 Mercury	Analytical Meth	nod: EPA 74	70A Preparation Me	thod: E	PA 7470A			
Mercury	ND	ug/L	0.20	1	07/15/19 09:44	07/16/19 11:09	7439-97-6	
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 18:08	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 18:08	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 18:08	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 18:08	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 18:08	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 18:08	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 18:08	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 18:08	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 18:08	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 18:08	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 18:08	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 18:08	75-00-3	
Chloroform	ND	ug/L	5.0	1		07/13/19 18:08	67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/13/19 18:08	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 18:08	124-48-1	
Dibromomethane	ND	ug/L	1.0	1		07/13/19 18:08	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 18:08	95-50-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 18:08	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 18:08	110-57-6	
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 18:08	75 24 2	

Project: Charah GW

Pace Project No.: 92436599

Sample: SW-1	Lab ID: 924	36599014	Collected: 07/08/1	9 12:00	Received: 07/12/19 12:00 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Meth	nod: EPA 82	260D					
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 18:08	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 18:08	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 18:08	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 18:08	156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 18:08	78-87-5	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 18:08	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 18:08	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 18:08	100-41-4	
2-Hexanone	ND	ug/L	5.0	1		07/13/19 18:08	591-78-6	
lodomethane	ND	ug/L	20.0	1		07/13/19 18:08	74-88-4	v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 18:08	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 18:08	108-10-1	
Styrene	ND	ug/L	1.0	1		07/13/19 18:08	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 18:08	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 18:08	79-34-5	
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 18:08		
Toluene	ND	ug/L	1.0	1		07/13/19 18:08	-	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 18:08		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 18:08		
Trichloroethene	ND	ug/L	1.0	1		07/13/19 18:08		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 18:08		
1,2,3-Trichloropropane	ND	ug/L	1.0	1		07/13/19 18:08		
Vinyl acetate	ND	ug/L	2.0	1		07/13/19 18:08		
Vinyl chloride	ND	ug/L	1.0	1		07/13/19 18:08		
Xylene (Total)	ND	ug/L	1.0	1		07/13/19 18:08		
Surrogates		ug/L	1.0	•		07710/10 10:00	1000 20 7	
4-Bromofluorobenzene (S)	95	%	70-130	1		07/13/19 18:08	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130	1		07/13/19 18:08		
Toluene-d8 (S)	99	%	70-130	1		07/13/19 18:08		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	40C-2011					
Total Dissolved Solids	1090	mg/L	25.0	1		07/13/19 00:38		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Rev 2.1 1993					
Chloride	7.8	mg/L	1.0	1		07/13/19 22:32	16887-00-6	
Fluoride	0.25	mg/L	0.10	1		07/13/19 22:32	16984-48-8	
Sulfate	21.6	mg/L	1.0	1		07/13/19 22:32		

Project: Charah GW

Pace Project No.: 92436599

Sample: TRIP BLANK	Lab ID: 924	36599015	Collected: 07/08/1	19 11:00	Received: 0			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Met	hod: EPA 82	260D					
Acetone	ND	ug/L	25.0	1		07/13/19 13:39	67-64-1	
Acrylonitrile	ND	ug/L	10.0	1		07/13/19 13:39	107-13-1	
Benzene	ND	ug/L	1.0	1		07/13/19 13:39	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/13/19 13:39	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/13/19 13:39	75-27-4	
Bromoform	ND	ug/L	1.0	1		07/13/19 13:39	75-25-2	
Bromomethane	ND	ug/L	2.0	1		07/13/19 13:39	74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		07/13/19 13:39	78-93-3	
Carbon disulfide	ND	ug/L	2.0	1		07/13/19 13:39	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/13/19 13:39	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/13/19 13:39	108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/13/19 13:39		
Chloroform	ND	ug/L	5.0	1		07/13/19 13:39		
Chloromethane	ND	ug/L	1.0	1		07/13/19 13:39		
Dibromochloromethane	ND	ug/L	1.0	1		07/13/19 13:39		
Dibromomethane	ND	ug/L	1.0	1		07/13/19 13:39		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 13:39		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/13/19 13:39		
trans-1,4-Dichloro-2-butene	ND	ug/L	1.0	1		07/13/19 13:39		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/13/19 13:39		
1,2-Dichloroethane	ND	ug/L	1.0	1		07/13/19 13:39		
1,1-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:39		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:39		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/13/19 13:39		
1,2-Dichloropropane	ND	ug/L	1.0	1		07/13/19 13:39		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 13:39		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		07/13/19 13:39		
Ethylbenzene	ND	ug/L	1.0	1		07/13/19 13:39		
2-Hexanone	ND	ug/L	5.0	1		07/13/19 13:39		
lodomethane	ND	ug/L	20.0	1		07/13/19 13:39		v1
Methylene Chloride	ND	ug/L	5.0	1		07/13/19 13:39		V I
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		07/13/19 13:39		
Styrene	ND	ug/L	1.0	1		07/13/19 13:39		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 13:39		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/13/19 13:39		
Tetrachloroethene	ND	ug/L	1.0	1		07/13/19 13:39		
Toluene	ND	ug/L	1.0	1		07/13/19 13:39		
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/13/19 13:39		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/13/19 13:39		
Trichloroethene	ND	ug/L ug/L	1.0	1		07/13/19 13:39		
Trichlorofluoromethane	ND	ug/L	1.0	1		07/13/19 13:39		
1,2,3-Trichloropropane	ND	ug/L ug/L	1.0	1		07/13/19 13:39		
Vinyl acetate	ND	-	2.0	1		07/13/19 13:39		
Vinyl chloride	ND	ug/L ug/L	2.0	1		07/13/19 13:39		
	ND	-	1.0	1		07/13/19 13:39		
Xylene (Total) Surrogates	NU	ug/L	1.0	I		01/13/19 13.39	100-20-7	
4-Bromofluorobenzene (S)	96	%	70-130	1		07/13/19 13:39	460-00-4	

Project: Charah GW

Pace Project No.: 92436599

Sample: TRIP BLANK	Lab ID: 924	36599015	Collected: 07/08/1	9 11:00	Received: 0	7/12/19 12:00 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level Landfill	Analytical Met	hod: EPA 82	260D					
<i>Surrogates</i> 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	106 99	% %	70-130 70-130	1 1		07/13/19 13:39 07/13/19 13:39		

Project:	Charah GW											
Pace Project No.:	92436599											
QC Batch:	486358		Ana	lysis Metho	d: E	EPA 7470A						
QC Batch Method:	EPA 7470A		Ana	lysis Descri	ption: 7	7470 Mercury	,					
Associated Lab San			599002, 924365 599009, 924365	, -	,		,	, -		,		
METHOD BLANK:	2626496			Matrix: W	/ater							
Associated Lab San	•	,	599002, 924365 599009, 924365	,	,		,	,		,		
			Bla	ank	Reporting							
Paran	neter	Unite	Re:	sult	Limit	Analyz	ed	Qualifier	S			
Mercury		ug/L		ND	0.20	0 07/16/19	10:10					
LABORATORY COM	NTROL SAMPL	E: 2626497										
			Spike	e LC	S	LCS	% Re	ec				
Paran	neter	Units	s Conc	. Re	sult	% Rec	Limit	S	Qualifiers			
Mercury		ug/L	. 2	2.5	2.7	107	8	0-120				
MATRIX SPIKE & M	IATRIX SPIKE I	DUPLICATE:	2626498		2626499							
MATRIX SPIKE & M	IATRIX SPIKE I	DUPLICATE:	2626498 MS	MSD	2626499							
MATRIX SPIKE & M	IATRIX SPIKE I	DUPLICATE: 92435887	MS	MSD Spike	2626499 MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & M Parameter			MS 010 Spike	-		MSD	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	Charah 92436	-							
QC Batch:	4865	24		Analysis Meth	nod: E	EPA	6010D		
QC Batch Method:	EPA :	3010A		Analysis Desc	cription: 6	601	0 MET		
Associated Lab Sar	nples:		, ,	92436599003, 92 92436599010, 92	,		,	'	'
METHOD BLANK:	262746	50		Matrix:	Water				
Associated Lab Sar	nples:		, ,	92436599003, 92 92436599010, 92	2436599011, 9		,	,	,
_				Blank	Reporting			0 11	
Parar	neter		Units	Result	Limit		Analyzed	Qualifiers	
Antimony			ug/L	ND	5.0	0	07/18/19 03:17		
Arsenic			ug/L	ND	10.0	0	07/18/19 03:17		
Barium			ug/L	ND	5.0	0	07/18/19 03:17		
Beryllium			ug/L	ND	1.0	0	07/18/19 03:17		
Cadmium			ug/L	ND	1.0	0	07/18/19 03:17		
Calcium			ug/L	ND	10	0	07/18/19 03:17		
Chromium			ug/L	ND	5.0	0	07/18/19 03:17		
Cobalt			ug/L	ND	5.0	0	07/18/19 03:17		
Copper			ug/L	ND	5.0	0	07/18/19 03:17		
Lead			ug/L	ND	5.0	0	07/18/19 03:17		
Molybdenum			ug/L	ND	5.0	0	07/18/19 03:17		
Nickel			ug/L	ND	5.0	0	07/18/19 03:17		
Selenium			ug/L	ND	10.0	0	07/18/19 03:17		

ND

ND

ND

5.0 07/18/19 03:17

5.0 07/18/19 03:17

10.0 07/18/19 03:17

LABORATORY CONTROL SAMPLE: 2627461

Silver

Zinc

Vanadium

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Antimony	ug/L	500	447	89	80-120	
Arsenic	ug/L	500	421	84	80-120	
Barium	ug/L	500	516	103	80-120	
Beryllium	ug/L	500	523	105	80-120	
Cadmium	ug/L	500	466	93	80-120	
Calcium	ug/L	5000	5020	100	80-120	
Chromium	ug/L	500	500	100	80-120	
Cobalt	ug/L	500	452	90	80-120	
Copper	ug/L	500	486	97	80-120	
Lead	ug/L	500	447	89	80-120	
Molybdenum	ug/L	500	442	88	80-120	
Nickel	ug/L	500	465	93	80-120	
Selenium	ug/L	500	441	88	80-120	
Silver	ug/L	250	238	95	80-120	
Vanadium	ug/L	500	471	94	80-120	
Zinc	ug/L	500	442	88	80-120	

ug/L

ug/L

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Charah GW Pace Project No.: 92436599

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 2627	462 MS	MSD	2627463							
	92	2436599006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Antimony	ug/L	ND	500	500	473	468	94	93	75-125	1	20	
Arsenic	ug/L	ND	500	500	438	432	88	86	75-125	1	20	
Barium	ug/L	47.8	500	500	523	525	95	95	75-125	0	20	
Beryllium	ug/L	ND	500	500	497	505	99	101	75-125	2	20	
Cadmium	ug/L	ND	500	500	482	476	96	95	75-125	1	20	
Calcium	ug/L	37800	5000	5000	42900	42800	102	100	75-125	0	20	
Chromium	ug/L	ND	500	500	513	509	102	102	75-125	1	20	
Cobalt	ug/L	ND	500	500	450	443	90	89	75-125	1	20	
Copper	ug/L	5.5	500	500	505	501	100	99	75-125	1	20	
Lead	ug/L	ND	500	500	444	438	89	88	75-125	1	20	
Molybdenum	ug/L	8.3	500	500	470	466	92	92	75-125	1	20	
Nickel	ug/L	ND	500	500	463	457	92	91	75-125	1	20	
Selenium	ug/L	ND	500	500	464	461	93	92	75-125	1	20	
Silver	ug/L	ND	250	250	250	250	100	100	75-125	0	20	
Vanadium	ug/L	ND	500	500	495	492	99	98	75-125	1	20	
Zinc	ug/L	ND	500	500	447	442	89	88	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	Charah GW 92436599											
-			A			DA 0000D						
QC Batch:	486252		,	sis Metho		PA 6020B						
QC Batch Method:	EPA 3010A		,	sis Descri		020 MET						
Associated Lab Sam		599001, 9243659900 599008, 9243659900										
METHOD BLANK:	2626174			Matrix: W	/ater							
Associated Lab Sam		599001, 9243659900 599008, 9243659900	9, 92436599	9010, 924	36599011, 9		,	,		,		
_			Blan		Reporting			o ""				
Param	neter	Units	Resu	ilt	Limit	Analyz	zed	Qualifiers	S			
Boron		ug/L		ND	25.0	07/17/19	00:37					
		ug/L		ND	2.5	07/17/19	00:37					
Lithium		-										
Lithium Thallium		ug/L		ND	0.10	07/17/19	00:37					
	ITROL SAMPLI	Ĵ		ND	0.10	07/17/19	00:37					
Thallium	ITROL SAMPLI	Ĵ	Spike	ND 		07/17/19 LCS	00:37 % Re	ec				
Thallium		Ĵ	Spike Conc.	LC	S				Qualifiers			
Thallium		E: 2626175	•	LC Res	S	LCS	% Re Limit		Qualifiers			
Thallium LABORATORY CON Param		E: 2626175	Conc.	LC 	CS sult	LCS % Rec	% Re Limit	ts (Qualifiers			
Thallium LABORATORY CON Paran Boron		E: 2626175	Conc50	LC 	CS sult	LCS % Rec 103	% Re Limit 8 8	ts (30-120	Qualifiers			
Thallium LABORATORY CON Param Boron Lithium Thallium	neter	E: 2626175 Units ug/L ug/L ug/L	Conc. 50 50 10	LC 	CS sult 51.6 50.0 9.8	LCS % Rec 103 100	% Re Limit 8 8	ts (30-120 30-120	Qualifiers	_		
Thallium LABORATORY CON Paran Boron Lithium	neter	E: 2626175 Units ug/L ug/L ug/L	Conc. 50 50 10	LC 	CS sult 51.6 50.0	LCS % Rec 103 100	% Re Limit 8 8	ts (30-120 30-120	Qualifiers	_		
Thallium LABORATORY CON Param Boron Lithium Thallium	neter	E: 2626175 Units ug/L ug/L ug/L	- Conc. 50 50 10 10 176 MS	LC Res 0 0 0 0 0 0 0 0 0 0 0	CS sult 51.6 50.0 9.8	LCS % Rec 103 100	% Re Limit 8 8	ts (30-120 30-120	Qualifiers	_	Max	
Thallium LABORATORY CON Param Boron Lithium Thallium	ATRIX SPIKE E	E: 2626175 Units ug/L ug/L ug/L	Conc. 50 50 10 176	LC Res 0 0 0	2S sult 51.6 50.0 9.8 2626177	LCS % Rec 103 100 98 MSD	% Re Limit 8 8 8	is (60-120 60-120 60-120		RPD	Max RPD	Qual
Thallium LABORATORY CON Param Boron Lithium Thallium MATRIX SPIKE & M	ATRIX SPIKE D	E: 2626175 Units ug/L ug/L ug/L DUPLICATE: 2626 92436599001	Conc. 50 50 10 176 MS Spike	LC Res D D D D MSD Spike	2S sult 51.6 50.0 9.8 2626177 MS	LCS % Rec 103 100 98 MSD	% Re Limit 8 8 8 8	is (00-120 00-120 00-120 MSD	% Rec Limits		RPD	Qual
Thallium LABORATORY CON Param Boron Lithium Thallium MATRIX SPIKE & M Parameter	ATRIX SPIKE D	E: 2626175 Units ug/L ug/L ug/L DUPLICATE: 2626 92436599001 Inits Result	Conc. 50 50 10 176 MS Spike Conc.	LC Re: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2S sult 51.6 50.0 9.8 2626177 MS Result	LCS % Rec 103 100 98 MSD Result	% Re Limit 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15 (0 10-120 00-120 00-120 00-120 MSD % Rec	% Rec Limits		RPD 20	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ace Project No.: 924365	99				
C Batch: 48628	2	Analysis Met	hod: E	PA 8260D	
C Batch Method: EPA 8	260D	Analysis Des	cription: 8	260D MSV Low Le	vel Landfill
ssociated Lab Samples:	92436599001, 92436599002 92436599008, 92436599009 92436599015				
ETHOD BLANK: 262631	8	Matrix:	Water		
ssociated Lab Samples:	92436599001, 92436599002 92436599008, 92436599009 92436599015				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,2-Tetrachloroethane	ug/L	ND	1.0	07/13/19 12:45	
1,1-Trichloroethane	ug/L	ND	1.0	07/13/19 12:45	
1,2,2-Tetrachloroethane	ug/L	ND	1.0	07/13/19 12:45	
1,2-Trichloroethane	ug/L	ND	1.0	07/13/19 12:45	
1-Dichloroethane	ug/L	ND	1.0	07/13/19 12:45	
1-Dichloroethene	ug/L	ND	1.0	07/13/19 12:45	
2,3-Trichloropropane	ug/L	ND	1.0	07/13/19 12:45	
2-Dichlorobenzene	ug/L	ND	1.0	07/13/19 12:45	
2-Dichloroethane	ug/L	ND	1.0	07/13/19 12:45	
2-Dichloropropane	ug/L	ND	1.0	07/13/19 12:45	
4-Dichlorobenzene	ug/L	ND	1.0	07/13/19 12:45	
Butanone (MEK)	ug/L	ND	5.0	07/13/19 12:45	
Hexanone	ug/L	ND	5.0	07/13/19 12:45	
Methyl-2-pentanone (MIB	() ug/L	ND	5.0	07/13/19 12:45	
cetone	ug/L	ND	25.0	07/13/19 12:45	
crylonitrile	ug/L	ND	10.0	07/13/19 12:45	
enzene	ug/L	ND	1.0	07/13/19 12:45	
romochloromethane	ug/L	ND	1.0	07/13/19 12:45	
omodichloromethane	ug/L	ND	1.0	07/13/19 12:45	
omoform	ug/L	ND	1.0	07/13/19 12:45	
romomethane	ug/L	ND	2.0	07/13/19 12:45	v3
arbon disulfide	ug/L	ND	2.0	07/13/19 12:45	
arbon tetrachloride	ug/L	ND	1.0	07/13/19 12:45	
hlorobenzene	ug/L	ND	1.0	07/13/19 12:45	
hloroethane	ug/L	ND	1.0		
hloroform	ug/L	ND	5.0		
hloromethane	ug/L	ND	1.0		
s-1,2-Dichloroethene	ug/L	ND	1.0		
s-1,3-Dichloropropene	ug/L	ND	1.0		
ibromochloromethane	ug/L	ND	1.0		
ibromomethane	ug/L	ND	1.0		
thylbenzene	ug/L	ND	1.0		
domethane	ug/L	ND	20.0		v1
ethylene Chloride	ug/L	ND	5.0		
tyrene	ug/L	ND	1.0		
etrachloroethene	ug/L	ND	1.0		
bluene	ug/L	ND	1.0		
ans-1,2-Dichloroethene	ug/L	ND	1.0	07/13/19 12:45	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Charah GW 92436599 Pace Project No.:

METHOD BLANK: 26263	18	Matrix:	Water		
Associated Lab Samples:	92436599001, 92436599002, 9 92436599008, 92436599009, 9 92436599015	,	,	,	
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	ND	1.0	07/13/19 12:45	
trans-1,4-Dichloro-2-butene	ug/L	ND	1.0	07/13/19 12:45	
Trichloroethene	ug/L	ND	1.0	07/13/19 12:45	
Trichlorofluoromethane	ug/L	ND	1.0	07/13/19 12:45	
Vinyl acetate	ug/L	ND	2.0	07/13/19 12:45	
Vinyl chloride	ug/L	ND	1.0	07/13/19 12:45	
Xylene (Total)	ug/L	ND	1.0	07/13/19 12:45	
1,2-Dichloroethane-d4 (S)	%	102	70-130	07/13/19 12:45	
4-Bromofluorobenzene (S)	%	96	70-130	07/13/19 12:45	
Toluene-d8 (S)	%	99	70-130	07/13/19 12:45	

LABORATORY CONTROL SAMPLE: 2626319

LABORATORT CONTROL SAMPLE:	2020319	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		47.5	95	70-130	
1,1,1-Trichloroethane	ug/L	50	40.3	81	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	49.2	98	70-130	
1,1,2-Trichloroethane	ug/L	50	43.5	87	70-130	
1,1-Dichloroethane	ug/L	50	42.9	86	70-130	
1,1-Dichloroethene	ug/L	50	46.1	92	70-130	
1,2,3-Trichloropropane	ug/L	50	51.1	102	70-130	
1,2-Dichlorobenzene	ug/L	50	47.4	95	70-130	
1,2-Dichloroethane	ug/L	50	38.8	78	70-130	
1,2-Dichloropropane	ug/L	50	44.0	88	70-130	
1,4-Dichlorobenzene	ug/L	50	46.8	94	70-130	
-Butanone (MEK)	ug/L	100	82.1	82	64-135	
P-Hexanone	ug/L	100	103	103	66-135	
-Methyl-2-pentanone (MIBK)	ug/L	100	93.3	93	70-130	
Acetone	ug/L	100	88.4	88	61-157	
crylonitrile	ug/L	250	219	88	61-143	
enzene	ug/L	50	44.6	89	70-130	
romochloromethane	ug/L	50	46.7	93	70-130	
romodichloromethane	ug/L	50	44.8	90	70-130	
Bromoform	ug/L	50	48.4	97	70-130	
Bromomethane	ug/L	50	40.3	81	38-130 \	/3
Carbon disulfide	ug/L	50	44.4	89	68-130	
Carbon tetrachloride	ug/L	50	43.1	86	70-130	
Chlorobenzene	ug/L	50	46.4	93	70-130	
Chloroethane	ug/L	50	40.9	82	37-142	
Chloroform	ug/L	50	40.5	81	70-130	
Chloromethane	ug/L	50	48.0	96	48-130	
cis-1,2-Dichloroethene	ug/L	50	41.5	83	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Charah GW
Pace Project No.:	92436599

LABORATORY CONTROL SAMPLE: 2626319

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,3-Dichloropropene	ug/L	50	46.7	93	70-130	
Dibromochloromethane	ug/L	50	47.4	95	70-130	
ibromomethane	ug/L	50	43.2	86	70-130	
lylbenzene	ug/L	50	46.7	93	70-130	
omethane	ug/L	100	115	115	40-130	/1
hylene Chloride	ug/L	50	41.0	82	67-132	
ene	ug/L	50	48.8	98	70-130	
achloroethene	ug/L	50	47.4	95	69-130	
ene	ug/L	50	43.5	87	70-130	
s-1,2-Dichloroethene	ug/L	50	43.3	87	70-130	
s-1,3-Dichloropropene	ug/L	50	45.3	91	70-130	
s-1,4-Dichloro-2-butene	ug/L	50	74.4	149	35-189	
hloroethene	ug/L	50	42.5	85	70-130	
nlorofluoromethane	ug/L	50	42.9	86	63-130	
/l acetate	ug/L	100	84.4	84	55-143	
yl chloride	ug/L	50	44.9	90	70-131	
lene (Total)	ug/L	150	146	97	70-130	
Dichloroethane-d4 (S)	%			95	70-130	
romofluorobenzene (S)	%			98	70-130	
uene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	ATE: 2626	320		2626321							
			MS	MSD								
	9	2436011001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	51.3	52.3	103	105	73-134	2	30	
1,1,1-Trichloroethane	ug/L	ND	50	50	46.9	47.7	94	95	82-143	2	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	50.4	52.4	101	105	70-136	4	30	
1,1,2-Trichloroethane	ug/L	ND	50	50	48.3	48.1	97	96	70-135	0	30	
1,1-Dichloroethane	ug/L	ND	50	50	48.7	49.9	97	100	70-139	2	30	
1,1-Dichloroethene	ug/L	ND	50	50	53.0	54.9	106	110	70-154	4	30	
1,2,3-Trichloropropane	ug/L	ND	50	50	53.7	54.5	107	109	71-137	2	30	
1,2-Dichlorobenzene	ug/L	ND	50	50	48.1	49.5	96	99	70-133	3	30	
1,2-Dichloroethane	ug/L	ND	50	50	43.8	44.2	88	88	70-137	1	30	
1,2-Dichloropropane	ug/L	ND	50	50	48.7	49.6	97	99	70-140	2	30	
1,4-Dichlorobenzene	ug/L	ND	50	50	46.5	49.2	93	98	70-133	6	30	
2-Butanone (MEK)	ug/L	ND	100	100	94.7	95.7	95	96	60-139	1	30	
2-Hexanone	ug/L	ND	100	100	104	107	104	107	65-138	3	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	100	100	95.4	97.6	95	98	65-135	2	30	
Acetone	ug/L	ND	100	100	112	116	112	116	60-148	4	30	
Acrylonitrile	ug/L	ND	250	250	251	257	100	103	64-147	2	30	
Benzene	ug/L	ND	50	50	49.8	50.5	98	100	70-151	1	30	
Bromochloromethane	ug/L	ND	50	50	55.7	55.9	111	112	70-141	0	30	
Bromodichloromethane	ug/L	ND	50	50	48.8	49.7	98	99	70-138	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Charah GW
Pace Project No.:	92436599

MATRIX SPIKE & MATRIX SP		ICATE: 2626	320		2626321							
Parameter	Units	92436011001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Bromoform	ug/L	ND	50	50	51.7	50.3	103	101	63-130	3	30	
Bromomethane	ug/L	ND	50	50	47.3	48.4	95	97	15-152	2	30	v3
Carbon disulfide	ug/L	ND	50	50	54.2	55.9	108	112	69-149	3	30	
Carbon tetrachloride	ug/L	ND	50	50	48.1	48.6	96	97	70-143	1	30	
Chlorobenzene	ug/L	ND	50	50	48.9	50.0	98	100	70-138	2	30	
Chloroethane	ug/L	ND	50	50	54.5	56.5	109	113	52-163	4	30	
Chloroform	ug/L	ND	50	50	48.4	47.1	95	93	70-139	3	30	
Chloromethane	ug/L	ND	50	50	57.5	59.7	115	119	41-139	4	30	
cis-1,2-Dichloroethene	ug/L	37.4	50	50	81.6	86.1	88	97	70-141	5	30	
cis-1,3-Dichloropropene	ug/L	ND	50	50	43.4	43.8	87	88	70-137	1	30	
Dibromochloromethane	ug/L	ND	50	50	50.8	50.8	102	102	70-134	0	30	
Dibromomethane	ug/L	ND	50	50	45.6	46.5	91	93	70-138	2	30	
Ethylbenzene	ug/L	ND	50	50	50.1	51.9	100	104	66-153	3	30	
lodomethane	ug/L	ND	100	100	111	113	111	113	20-138	2	30	
Methylene Chloride	ug/L	ND	50	50	49.0	49.1	98	98	42-159	0	30	
Styrene	ug/L	ND	50	50	49.9	50.4	100	101	70-135	1	30	
Tetrachloroethene	ug/L	334	50	50	349	379	28	89	59-143	8	30	M1
Toluene	ug/L	ND	50	50	47.5	48.7	95	97	59-148	2	30	
trans-1,2-Dichloroethene	ug/L	ND	50	50	49.1	51.5	98	103	70-146	5	30	
trans-1,3-Dichloropropene	ug/L	ND	50	50	42.1	41.8	84	84	70-135	1	30	
trans-1,4-Dichloro-2-butene	ug/L	ND	50	50	33.6	34.9	67	70	47-135	4	30	
Trichloroethene	ug/L	5.8	50	50	51.9	53.4	92	95	70-147	3	30	
Trichlorofluoromethane	ug/L	ND	50	50	49.4	52.4	99	105	70-148	6	30	
Vinyl acetate	ug/L	ND	100	100	51.3	47.2	51	47	49-151	8	30	M1
Vinyl chloride	ug/L	ND	50	50	50.7	52.8	101	106	70-156	4	30	
Xylene (Total)	ug/L	ND	150	150	152	156	101	104	63-158	3	30	
1,2-Dichloroethane-d4 (S)	%						95	94	70-130			
4-Bromofluorobenzene (S)	%						101	99	70-130			
Toluene-d8 (S)	%						98	96	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	Charah GV	N								
Pace Project No.:	92436599									
QC Batch:	486231		Analysis N	/lethod:	SN	/ 2540C-201	1			
QC Batch Method:	SM 2540	C-2011	Analysis E	Description:	25	40C Total Di	ssolved S	Solids		
Associated Lab Sar	nples: 92	436599004, 924365990	05, 92436599006	8, 924365990 [,]	10, 92	436599012,	9243659	9013, 9	92436599014	
METHOD BLANK:	2626107		Matr	rix: Water						
Associated Lab Sar	nples: 92	436599004, 924365990		6, 924365990 ⁻	10, 92	436599012,	9243659	9013, 9	92436599014	
5			Blank	Reportir	ng			0 ""		
Paran	neter	Units	Result	Limit		Analyze	d	Qualifi	ers	
Total Dissolved Soli	ds	mg/L	N	D	25.0	07/13/19 00	0:38			
LABORATORY CO	NTROL SAM	IPLE: 2626108		1.00			04 B			
Parar	neter	Units	Spike Conc.	LCS Result		LCS % Rec	% Reo Limits		Qualifiers	
Total Dissolved Soli	ds	mg/L	251	234		93	90)-110		
SAMPLE DUPLICA	TE: 26261	09								
			9243659901	0 Dup				Max		
Paran	neter	Units	Result	Result		RPD		RPD	Qualifiers	
Total Dissolved Soli	ds	mg/L	149	90	1640		10		5 D6	
SAMPLE DUPLICA	TE: 26261	10								
			9243621000	1 Dup				Max		
Paran	neter	Units	Result	Result		RPD		RPD	Qualifiers	
Total Dissolved Soli		mg/L			762		0		5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	Charah GW						
Pace Project No.:	92436599						
QC Batch:	486653		Analysis M	ethod:	SM 2540C-20	11	
QC Batch Method:	SM 2540C-2011	1	Analysis D	escription:	2540C Total D	issolved Solids	
Associated Lab Sam	nples: 9243659	9003, 924365990	07, 92436599008	92436599009			
METHOD BLANK:	2627907		Matri	x: Water			
Associated Lab Sam	nples: 9243659	9003, 924365990	07, 92436599008	92436599009			
			Blank	Reporting			
Param	neter	Units	Result	Limit	Analyz	ed Quali	fiers
Total Dissolved Solid	ds	mg/L	N	25	5.0 07/16/19	14:15	
LABORATORY CON	NTROL SAMPLE:	2627908					
			Spike	LCS	LCS	% Rec	
Param	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Solid	ds	mg/L	251	240	96	90-110	
SAMPLE DUPLICAT	TE: 2627909						
			92436210003	5 Dup		Max	
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ds	mg/L	384	4 4	44	14	5 D6
SAMPLE DUPLICAT	TE: 2627910						
_			92436451001	- 1		Max	
Param		Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ds	mg/L	704	4 7	68	9	5 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	Charah GW 92436599						
QC Batch:	486655		Analysis M	ethod:	SM 2540C-20	11	
QC Batch Method:	SM 2540C-2012	1	Analysis De	escription:	2540C Total D	issolved Solids	
Associated Lab Sam	nples: 9243659	9001, 9243659900	02, 92436599011				
METHOD BLANK:	2627912		Matrix	: Water			
Associated Lab Sam	ples: 9243659	9001, 9243659900	02, 92436599011				
			Blank	Reporting			
Param	neter	Units	Result	Limit	Analyze	ed Qualit	fiers
Total Dissolved Solid	ds	mg/L	NE	25	5.0 07/16/19 1	4:22	
LABORATORY CON	ITROL SAMPLE:	2627913					
Param	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solid	ds	mg/L	251	248	99	90-110	
SAMPLE DUPLICAT	E: 2627914						
			92435891071	Dup		Max	
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	st	mg/L	687	7	25	5	5
SAMPLE DUPLICAT	E: 2627915						
			92435891081	Dup		Max	
Param	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ls	mg/L	52.0	54	5.0	6	5 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	Charal 92436	-											
QC Batch:	4862			Anal	vsis Metho	d: E	PA 300.0 I	Rev 2.1 199	93				
QC Batch Method:		300.0 Rev 2.	1 1993		vsis Descri		00.0 IC An						
Associated Lab Sa	mples:		01, 9243659900 08, 9243659900	,	,	,		,	99006, 92	436599007	,		
METHOD BLANK:	26261 ²	17			Matrix: W	ater							
Associated Lab Sar	mples:		01, 9243659900 08, 9243659900	9, 9243659	99010, 924	36599011, 9			99006, 92	436599007	,		
Dara	matar		Units	Bla		Reporting Limit	Anal	rad	Qualifier	•			
	meter			Res			Anal		Quaimer	S			
Chloride			mg/L		ND	1.0							
Fluoride Sulfate			mg/L mg/L		ND ND	0.10 1.0							
LABORATORY CO	NTROL	SAMPLE:	2626118	0				0/ D					
Para	meter		Units	Spike Conc.	LC Res	-	LCS % Rec	% Re Limit		Qualifiers			
Chloride			mg/L		50	51.7	10	3 9	90-110		_		
Fluoride			mg/L	2	.5	2.6	10	59	90-110				
Sulfate			mg/L	Ę	50	50.6	10	1 9	90-110				
MATRIX SPIKE & M	MATRIX	SPIKE DUPL	LICATE: 2626	-		2626120							
			92435891078	MS Spiles	MSD Spille	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Spike Conc.	Spike Conc.	Result	Result	% Rec	% Rec	% Rec	RPD	Max RPD	Qual
Chloride		mg/L		50	50	374	374	86	86		0		M6
Fluoride		mg/L	0.15	2.5	2.5	3.0	374	116	115		1	-	M1
Sulfate		mg/L	33.6	50	50	83.6	83.9	100	101	90-110	0		
MATRIX SPIKE & M	MATRIX	SPIKE DUPL	LICATE: 2626			2626122							
			00400500000	MS	MSD	MO	MOD	MC	MCD			Mass	
Paramete	er	Units	92436599003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		mg/L	 855	50	50	894	894	77	77	90-110	0	10	M6
CHICHCE		0		2.5			2.9	108	110		2	-	-
Fluoride		mg/L	0.17	Z.0	2.5	2.9	2.9	100	110	30-110	~ ~	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

,	Charah GW											
Pace Project No.: 9	2436599											
QC Batch:	QC Batch: 486234			ysis Method	l :t	EPA 300.0	Rev 2.1 199	93				
QC Batch Method:	EPA 300.0 Rev 2	.1 1993	Analy	ysis Descrip	otion: 3	300.0 IC Ar	nions					
Associated Lab Samp	les: 92436599	013, 9243659901	4									
METHOD BLANK: 2	626123			Matrix: Wa	ater							
Associated Lab Samp	les: 92436599	013, 9243659901	4									
			Blar		Reporting							
Parame	ter	Units	Res	ult	Limit	Anal	yzed	Qualifiers	S			
Chloride		mg/L		ND	1.	0 07/13/1	9 20:50					
Fluoride		mg/L		ND	0.1							
Sulfate		mg/L		ND	1.	0 07/13/1	9 20:50					
LABORATORY CONT		2626124										
LABORATORT CONT		2020124	Spike	LC	S	LCS	% Re	ec				
Parame	ter	Units	Conc.	Res		% Rec	Limit		Qualifiers			
Chloride		mg/L	5	50	51.5	10	3 9	90-110		_		
Fluoride		mg/L	2.	.5	2.7	11	0 9	90-110				
Sulfate		mg/L	5	50	51.8	10	4 9	90-110				
MATRIX SPIKE & MA		LICATE: 2626	125		2626126							
		2020	MS	MSD	2020120							
		92436599013	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	50.2	50	50	94.0	93.5	88	87	90-110	0	10	M1
Fluoride	mg/L	0.16	2.5	2.5	2.7	2.6	100	99	90-110	1	10	
Sulfate	mg/L	47.0	50	50	98.1	98.1	102	102	90-110	0	10	
MATRIX SPIKE & MA		LICATE: 2626	127		2626128							
			MS	MSD								
		92436687002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
		Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Parameter	Units	Result										
Parameter	Units mg/L		50	50	16300	16200	-1500	-1720	90-110	1	10	M6
				50 2.5	16300 27.8	16200 27.8	-1500 96	-1720 98	90-110 90-110	1 0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Charah GW Pace Project No.: 92436599

Sample: BG-1 PWS:	Lab ID: 9243659 Site ID:	9001 Collected: 07/11/19 13:00 Sample Type:	Received:	07/12/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.000 ± 0.525 (0.940) C:NA T:86%	pCi/L	07/26/19 13:48	3 13982-63-3	
Radium-228	EPA 904.0	0.823 ± 0.435 (0.787) C:81% T:76%	pCi/L	07/25/19 12:48	3 15262-20-1	
Total Radium	Total Radium Calculation	0.823 ± 0.960 (1.73)	pCi/L	07/30/19 13:54	4 7440-14-4	

Project: Charah GW

Sample: BG-2 PWS:	Lab ID: 924365 Site ID:	599002 Collected: 07/11/19 09:50 Sample Type:	Received:	07/12/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.247 ± 0.625 (1.03) C:NA T:87%	pCi/L	07/26/19 13:48	8 13982-63-3	
Radium-228	EPA 904.0	0.205 ± 0.329 (0.715) C:81% T:83%	pCi/L	07/25/19 12:48	8 15262-20-1	
Total Radium	Total Radium Calculation	0.452 ± 0.954 (1.75)	pCi/L	07/30/19 13:54	4 7440-14-4	

Project: Charah GW Pace Project No.: 92436599 Sample: MW-1 Lab ID: 92436599003 Collected: 07/10/19 17:05 Received: 07/12/19 12:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Parameters Units Analyzed CAS No. Qual EPA 903.1 1.03 ± 0.736 (0.964) Radium-226 pCi/L 07/26/19 13:48 13982-63-3 C:NA T:86% EPA 904.0 1.45 ± 0.478 (0.661) Radium-228 pCi/L 07/25/19 12:48 15262-20-1 C:81% T:89% Total Radium Total Radium 2.48 ± 1.21 (1.63) pCi/L 07/30/19 13:54 7440-14-4

Calculation

Radium-228

Total Radium

Matrix: Water

07/25/19 12:49 15262-20-1

07/30/19 13:54 7440-14-4

CAS No.

Qual

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Charah GW Pace Project No.: 92436599 Sample: MW-4 Lab ID: 92436599004 Collected: 07/09/19 10:55 Received: 07/12/19 12:00 PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Parameters Units Analyzed EPA 903.1 0.760 ± 0.551 (0.714) Radium-226 pCi/L 07/26/19 13:48 13982-63-3

EPA 904.0

Total Radium

Calculation

C:NA T:94%

C:82% T:79%

0.556 ± 0.380 (0.734)

1.32 ± 0.931 (1.45)

pCi/L

pCi/L

Total Radium

Qual

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: Charah GW Pace Project No.: 92436599 Sample: MW-5 Lab ID: 92436599005 Collected: 07/09/19 14:50 Received: 07/12/19 12:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Parameters Units Analyzed CAS No. EPA 903.1 -0.0968 ± 0.718 (1.28) Radium-226 pCi/L 07/26/19 13:48 13982-63-3 C:NA T:77% EPA 904.0 0.987 ± 0.440 (0.737) Radium-228 pCi/L 07/25/19 12:49 15262-20-1

C:80% T:80%

0.987 ± 1.16 (2.02)

pCi/L

07/30/19 13:54 7440-14-4

Total Radium

Calculation

Project: Charah GW Pace Project No.: 92436599 Sample: MW-6 Lab ID: 92436599006 Collected: 07/09/19 13:15 Received: 07/12/19 12:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Parameters Units Analyzed CAS No. Qual EPA 903.1 0.681 ± 0.785 (1.17) Radium-226 pCi/L 07/26/19 13:48 13982-63-3 C:NA T:87% EPA 904.0 0.685 ± 0.444 (0.850) Radium-228 pCi/L 07/25/19 15:54 15262-20-1 C:80% T:80% Total Radium Total Radium 1.37 ± 1.23 (2.02) pCi/L 07/30/19 13:54 7440-14-4

Calculation

Project: Charah GW Pace Project No.: 92436599 Sample: MW-7R Lab ID: 92436599007 Collected: 07/10/19 09:50 Received: 07/12/19 12:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Parameters Units Analyzed CAS No. Qual EPA 903.1 0.316 ± 0.650 (1.05) Radium-226 pCi/L 07/26/19 14:06 13982-63-3 C:NA T:81% EPA 904.0 0.686 ± 0.424 (0.803) Radium-228 pCi/L 07/25/19 15:55 15262-20-1 C:78% T:86% Total Radium Total Radium 1.00 ± 1.07 (1.85) pCi/L 07/30/19 13:54 7440-14-4

Calculation

Project: Charah GW

92436599

Sample: MW-8 PWS:	Lab ID: 92436 Site ID:	599008 Collected: 07/10/19 13:25 Sample Type:	Received:	07/12/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.105 ± 0.507 (0.871) C:NA T:91%	pCi/L	07/26/19 14:06	3 13982-63-3	
Radium-228	EPA 904.0	0.535 ± 0.389 (0.762) C:81% T:85%	pCi/L	07/25/19 15:55	5 15262-20-1	
Total Radium	Total Radium Calculation	0.640 ± 0.896 (1.63)	pCi/L	07/30/19 13:54	1 7440-14-4	

Project: Charah GW

Pace Project No.: 9	92436599
---------------------	----------

Sample: DUP PWS:	Lab ID: 92436 Site ID:	599009 Collected: 07/10/19 12:20 Sample Type:	Received:	07/12/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.280 ± 0.650 (1.05) C:NA T:91%	pCi/L	07/26/19 14:06	3 13982-63-3	
Radium-228	EPA 904.0	0.649 ± 0.430 (0.826) C:82% T:77%	pCi/L	07/25/19 15:55	5 15262-20-1	
Total Radium	Total Radium Calculation	0.929 ± 1.08 (1.88)	pCi/L	07/30/19 13:54	4 7440-14-4	

Project: Charah GW

Pace Project No.: 92436599

Sample: LEACHATE PWS:	Lab ID: 92436 Site ID:	599010 Collected: 07/08/19 11:30 Sample Type:	Received:	07/12/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.458 ± 0.554 (0.832) C:NA T:96%	pCi/L	07/26/19 14:06	13982-63-3	
Radium-228	EPA 904.0	0.517 ± 0.391 (0.771) C:79% T:84%	pCi/L	07/25/19 15:55	15262-20-1	
Total Radium	Total Radium Calculation	0.975 ± 0.945 (1.60)	pCi/L	07/30/19 13:54	7440-14-4	

Project: Charah GW

Pace Project No.: 92436599

Sample: EQUIPMENT BLANK PWS:	Lab ID: 924365 Site ID:	99011 Collected: 07/11/19 13:30 Sample Type:	Received:	07/12/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	-0.0338 ± 0.672 (1.20) C:NA T:82%	pCi/L	07/26/19 14:06	3 13982-63-3	
Radium-228	EPA 904.0	0.557 ± 0.396 (0.772) C:78% T:85%	pCi/L	07/25/19 15:55	5 15262-20-1	
Total Radium	Total Radium Calculation	0.557 ± 1.07 (1.97)	pCi/L	07/30/19 13:55	5 7440-14-4	

Project: Charah GW Pace Project No.: 92436599

Sample: AMBIENT BLANK PWS:	Lab ID: 924365 Site ID:	99012 Collected: 07/09/19 15:20 Sample Type:	Received:	07/12/19 12:00	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Radium-226	EPA 903.1	0.459 ± 0.374 (0.454) C:NA T:93%	pCi/L	07/26/19 14:06	6 13982-63-3	
Radium-228	EPA 904.0	0.403 ± 0.387 (0.795) C:79% T:83%	pCi/L	07/25/19 15:55	5 15262-20-1	
Total Radium	Total Radium Calculation	0.862 ± 0.761 (1.25)	pCi/L	07/30/19 13:55	5 7440-14-4	

Project: Charah GW Pace Project No.: 92436599 Sample: SW-2 Lab ID: 92436599013 Collected: 07/08/19 12:15 Received: 07/12/19 12:00 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual EPA 903.1 1.04 ± 0.655 (0.745) Radium-226 pCi/L 07/26/19 14:06 13982-63-3 C:NA T:73% EPA 904.0 0.658 ± 0.466 (0.908) Radium-228 pCi/L 07/25/19 15:55 15262-20-1 C:79% T:71% Total Radium Total Radium 1.70 ± 1.12 (1.65) pCi/L 07/30/19 13:55 7440-14-4 Calculation

Project: Charah GW Pace Project No.: 92436599 Sample: SW-1 Lab ID: 92436599014 Collected: 07/08/19 12:00 Received: 07/12/19 12:00 Matrix: Water PWS: Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Parameters Units Analyzed CAS No. Qual EPA 903.1 2.08 ± 1.05 (0.352) Radium-226 pCi/L 07/26/19 14:06 13982-63-3 C:NA T:86% 1.96 ± 0.838 (1.38) EPA 904.0 Radium-228 pCi/L 07/25/19 15:55 15262-20-1 C:81% T:57% Total Radium Total Radium 4.04 ± 1.89 (1.73) pCi/L 07/30/19 13:55 7440-14-4 Calculation

QUALITY CONTROL - RADIOCHEMISTRY

Project:	Charah GW					
Pace Project No.:	92436599					
QC Batch:	352403		Analysis Method:	EPA 903.1		
QC Batch Method:	EPA 903.1		Analysis Description:	903.1 Radium	-226	
Associated Lab Sar		,	, 92436599003, 92436599004 , 92436599010, 92436599011	·	, ,	
METHOD BLANK:	1712126		Matrix: Water			
Associated Lab Sar	•	,	, 92436599003, 92436599004 , 92436599010, 92436599011	,	, ,	,
Parar	neter	Act ± Ur	nc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-226		$\frac{1}{0.327 \pm 0.351}$ (0.	.503) C:NA T:83%	pCi/L	07/26/19 13:48	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	Charah GW					
Pace Project No.:	92436599					
QC Batch:	352407		Analysis Method:	EPA 904.0		
QC Batch Method:	EPA 904.0		Analysis Description:	904.0 Radium	228	
Associated Lab Sar		,	2, 92436599003, 924365990 9, 92436599010, 924365990	, ,	,	
METHOD BLANK:	1712129		Matrix: Water			
Associated Lab Sar	•	,	2, 92436599003, 924365990 9, 92436599010, 924365990	, ,	,	,
Parar	meter	Act ± U	Inc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Radium-228		0.404 ± 0.331 (0).661) C:83% T:86%	pCi/L	07/25/19 11:21	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:	Charah GW
Pace Project No.:	92436599

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

- PASI-A Pace Analytical Services Asheville
- PASI-C Pace Analytical Services Charlotte
- PASI-PA Pace Analytical Services Greensburg

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

QUALIFIERS

Project:	Charah GW
Pace Project No .:	92436599

ANALYTE QUALIFIERS

v2	The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the
	associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Charah GW
Pace Project No .:	92436599

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
92436599001	BG-1	EPA 3010A	486524	EPA 6010D	486982
92436599002	BG-2	EPA 3010A	486524	EPA 6010D	486982
2436599003	MW-1	EPA 3010A	486524	EPA 6010D	486982
2436599004	MW-4	EPA 3010A	486524	EPA 6010D	486982
2436599005	MW-5	EPA 3010A	486524	EPA 6010D	486982
2436599006	MW-6	EPA 3010A	486524	EPA 6010D	486982
2436599007	MW-7R	EPA 3010A	486524	EPA 6010D	486982
2436599008	MW-8	EPA 3010A	486524	EPA 6010D	486982
2436599009	DUP	EPA 3010A	486524	EPA 6010D	486982
2436599010	LEACHATE	EPA 3010A	486524	EPA 6010D	486982
2436599011	EQUIPMENT BLANK	EPA 3010A	486524	EPA 6010D	486982
2436599012	AMBIENT BLANK	EPA 3010A	486524	EPA 6010D	486982
2436599013	SW-2	EPA 3010A	486524	EPA 6010D	486982
2436599014	SW-1	EPA 3010A	486524	EPA 6010D	486982
2436599001	BG-1	EPA 3010A	486252	EPA 6020B	486518
2436599002	BG-2	EPA 3010A	486252	EPA 6020B	486518
2436599003	MW-1	EPA 3010A	486252	EPA 6020B	486518
2436599004	MW-4	EPA 3010A	486252	EPA 6020B	486518
2436599005	MW-5	EPA 3010A	486252	EPA 6020B	486518
2436599006	MW-6	EPA 3010A	486252	EPA 6020B	486518
2436599007	MW-7R	EPA 3010A	486252	EPA 6020B	486518
2436599008	MW-8	EPA 3010A	486252	EPA 6020B	486518
2436599009	DUP	EPA 3010A	486252	EPA 6020B	486518
2436599010	LEACHATE	EPA 3010A	486252	EPA 6020B	486518
2436599011	EQUIPMENT BLANK	EPA 3010A	486252	EPA 6020B	486518
2436599012		EPA 3010A	486252	EPA 6020B	486518
2436599013	SW-2	EPA 3010A	486252	EPA 6020B	486518
2436599014	SW-1	EPA 3010A	486252	EPA 6020B	486518
2436599001	BG-1	EPA 7470A	486358	EPA 7470A	486379
2436599002	BG-2	EPA 7470A	486358	EPA 7470A	486379
2436599003	 MW-1	EPA 7470A	486358	EPA 7470A	486379
2436599004	MW-4	EPA 7470A	486358	EPA 7470A	486379
2436599005	MW-5	EPA 7470A	486358	EPA 7470A	486379
2436599006	MW-6	EPA 7470A	486358	EPA 7470A	486379
2436599007	MW-7R	EPA 7470A	486358	EPA 7470A	486379
2436599008	MW-8	EPA 7470A	486358	EPA 7470A	486379
2436599008	DUP	EPA 7470A	486358	EPA 7470A	486379
	LEACHATE				
2436599010		EPA 7470A	486358	EPA 7470A	486379
2436599011	EQUIPMENT BLANK	EPA 7470A	486358	EPA 7470A	486379
2436599012		EPA 7470A	486358	EPA 7470A	486379
2436599013 2436599014	SW-2 SW-1	EPA 7470A EPA 7470A	486358 486358	EPA 7470A EPA 7470A	486379 486379
					100013
2436599001	BG-1	EPA 8260D	486282		
2436599002	BG-2	EPA 8260D	486282		
2436599003	MW-1	EPA 8260D	486282		
2436599004	MW-4	EPA 8260D	486282		
2436599005	MW-5	EPA 8260D	486282		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	Charah GW
Pace Project No .:	92436599

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92436599006	MW-6	EPA 8260D	486282		
92436599007	MW-7R	EPA 8260D	486282		
92436599008	MW-8	EPA 8260D	486282		
92436599009	DUP	EPA 8260D	486282		
92436599010	LEACHATE	EPA 8260D	486282		
92436599011	EQUIPMENT BLANK	EPA 8260D	486282		
92436599012	AMBIENT BLANK	EPA 8260D	486282		
92436599013	SW-2	EPA 8260D	486282		
92436599014	SW-1	EPA 8260D	486282		
92436599015	TRIP BLANK	EPA 8260D	486282		
92436599001	BG-1	EPA 903.1	352403		
92436599002	BG-2	EPA 903.1	352403		
92436599003	MW-1	EPA 903.1	352403		
92436599004	MW-4	EPA 903.1	352403		
92436599005	MW-5	EPA 903.1	352403		
92436599006	MW-6	EPA 903.1	352403		
92436599007	MW-7R	EPA 903.1	352403		
92436599008	MW-8	EPA 903.1	352403		
92436599009	DUP	EPA 903.1	352403		
92436599010	LEACHATE	EPA 903.1	352403		
92436599011	EQUIPMENT BLANK	EPA 903.1	352403		
92436599012	AMBIENT BLANK	EPA 903.1	352403		
92436599013	SW-2	EPA 903.1	352403		
92436599014	SW-1	EPA 903.1	352403		
92436599001	BG-1	EPA 904.0	352407		
92436599002	BG-2	EPA 904.0	352407		
92436599003	MW-1	EPA 904.0	352407		
92436599004	MW-4	EPA 904.0	352407		
92436599005	MW-5	EPA 904.0	352407		
92436599006	MW-6	EPA 904.0	352407		
92436599007	MW-7R	EPA 904.0	352407		
92436599008	MW-8	EPA 904.0	352407		
92436599009	DUP	EPA 904.0	352407		
92436599010	LEACHATE	EPA 904.0	352407		
92436599011	EQUIPMENT BLANK	EPA 904.0	352407		
92436599012	AMBIENT BLANK	EPA 904.0	352407		
92436599013	SW-2	EPA 904.0	352407		
92436599014	SW-1	EPA 904.0	352407		
92436599001	BG-1	Total Radium Calculation	354228		
92436599002	BG-2	Total Radium Calculation	354228		
92436599003	MW-1	Total Radium Calculation	354228		
92436599004	MW-4	Total Radium Calculation	354228		
92436599005	MW-5	Total Radium Calculation	354228		
92436599006	MW-6	Total Radium Calculation	354228		
92436599007	MW-7R	Total Radium Calculation	354228		
92436599008	MW-8	Total Radium Calculation	354228		
92436599009	DUP	Total Radium Calculation	354228		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Charah GW Pace Project No.: 92436599

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92436599010	LEACHATE	Total Radium Calculation	354228		
92436599011	EQUIPMENT BLANK	Total Radium Calculation	354231		
92436599012	AMBIENT BLANK	Total Radium Calculation	354231		
92436599013	SW-2	Total Radium Calculation	354231		
92436599014	SW-1	Total Radium Calculation	354231		
92436599001	BG-1	SM 2540C-2011	486655		
92436599002	BG-2	SM 2540C-2011	486655		
92436599003	MW-1	SM 2540C-2011	486653		
92436599004	MW-4	SM 2540C-2011	486231		
92436599005	MW-5	SM 2540C-2011	486231		
92436599006	MW-6	SM 2540C-2011	486231		
92436599007	MW-7R	SM 2540C-2011	486653		
92436599008	MW-8	SM 2540C-2011	486653		
92436599009	DUP	SM 2540C-2011	486653		
92436599010	LEACHATE	SM 2540C-2011	486231		
92436599011	EQUIPMENT BLANK	SM 2540C-2011	486655		
92436599012	AMBIENT BLANK	SM 2540C-2011	486231		
92436599013	SW-2	SM 2540C-2011	486231		
92436599014	SW-1	SM 2540C-2011	486231		
92436599001	BG-1	EPA 300.0 Rev 2.1 1993	486233		
92436599002	BG-2	EPA 300.0 Rev 2.1 1993	486233		
92436599003	MW-1	EPA 300.0 Rev 2.1 1993	486233		
92436599004	MW-4	EPA 300.0 Rev 2.1 1993	486233		
92436599005	MW-5	EPA 300.0 Rev 2.1 1993	486233		
92436599006	MW-6	EPA 300.0 Rev 2.1 1993	486233		
92436599007	MW-7R	EPA 300.0 Rev 2.1 1993	486233		
92436599008	MW-8	EPA 300.0 Rev 2.1 1993	486233		
92436599009	DUP	EPA 300.0 Rev 2.1 1993	486233		
92436599010	LEACHATE	EPA 300.0 Rev 2.1 1993	486233		
92436599011	EQUIPMENT BLANK	EPA 300.0 Rev 2.1 1993	486233		
92436599012	AMBIENT BLANK	EPA 300.0 Rev 2.1 1993	486233		
92436599013	SW-2	EPA 300.0 Rev 2.1 1993	486234		
92436599014	SW-1	EPA 300.0 Rev 2.1 1993	486234		

	Chain-	of-Custod	v is a LEGAL	DOCUMENT	Chain-of-Custody is a LEGAL DOCUMENT - Complete all rele	relevent fields									
Company: HDR			Billing Information:	rmation:						AL		-			
Address: 440 S Church Street Suite 900, Charlotte, NC 28202	900, Charlotte, 1	NC 28202							Conta	Container Preservative Type **	rvative 1	Ype **	=	Lab Project Mailager.	
Report To: Jacob Ruffing			Email To: ja	Email To: jacob.ruffing@hdrinc.com	rinc.com		-d **	eservative	Tvpes: (1) nitric acio	(2) sulfu	ric acid. (3) h	drochloric ac	Breservative Tvoes: (1) nitric acid. (2) sulfuric acid. (3) hodrochloric acid. (4) sodium hodrovida. (5) sior accesse	
Copy To:			Site Collect	tion Info/Ad	Site Collection Info/Address: Charah Brickhaven	chaven	(6) m (C) ar	ethanol, nmonium	(7) sodiui hydroxic	n bisulfate, le, (D) TSP, ((8) sodiur U) Unpre	n thiosulfate, served, (O) O	(9) hexane, (A	 (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other 	
Customer Project Name/Number:				County/City:	Time Zo	ollected:			-	Analyses	yses			Lab Profile/Line: Tab Sample Receipt Checklist.	
Phone: Email:	Site/Facility ID #	#	NC /	Moncure	[]PT []MT [Compliance Monitoring?	[]MT []CT [x]ET onitoring? 1 No	, ET							custody Signatures Present & Collector Signatures Present & Collector Signatures Present & Collector Signature Present & Collector Prese	N NA N NA
Collected By (print):	Purchase Order # : Quote #:	:#			tion C	2							ш С 0.		N NA N NA
Collected By (signature):	Turnaround Date Required:	te Require	:pi		Immediately Packed on Ice.	ed on Ice:								Ice ptable <	N NA
Sample Disposal: [] Dispose as appropriate [] Return	Rush: []	[] Same Day [/ [] Next Day		tered (i	plicable): o								ime esent	N NA N NA
] Archive:	[] 2 Day [] 3 Day [(Expedite Char] 3 Day Expedite Ch	- a] 5 Day				, F	50	07		1		table (DN NA.
* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other	below): Drinkin), Wipe (WP), Air	g Water (I r (AR), Tiss	DW), Ground sue (TS), Bios	d Water (GV assay (B), Va	V), Wastewater (WW), apor (V), Other (OT)	w),	list	705 '					4 01 11	pu strips: Sulfide Present Lead Acetate Strips:	
Customer Sample ID	Matrix *	Comp / Grab	Collected (or Composite Star	Collected (or Composite Start)	Composite End	CI	Ctns full	10-0 [.] 0	t OOt	101/01	50-B,	rP∗ glar	нн	LAB USE ONLY: Lab Sample # / Comments:	
BG-1	GW	Grab	Jin h.a	lime and	Date		× 85	90 ×						bh 59(h2h	
BG-2	GW	Grab	1				< ×	×	-	-	< ×				100
MW-1	GW	Grab	7/10/	Sofi			×	×	-	-	×				0 PX
MW-2	GW	Grab	$\left[\right]$	1			*	*			×				3
MW-3	GW	Grah	N				*	*	++	*	*				
MW-4	GW	Grab	3777	N 21	or 10/12/4/4	1055	×	×	-	××	×				In your
MW-5	GW	Grab	7/19/19	1450			×	×		X X	×				200
MW-6	GW	Grab	7/9/19	1315			×	×	×	X X	×				yuy
MW-7R	θW	Grab	7/10/19	0450			×	×	×	X X	×				
MW-8	GW	Grab	2/10/19	13:25	Q		×	×	×	××	×				AND
Customer Remarks / Special Conditions / Possible Hazards:	ons / Possible H	azards:	Type of Ice Used:	Used:	Wet Blue	Dry None	ne	SHOR	T HOLD.	SHORT HOLDS PRESENT (<72 hours) :	(<72 ho	urs): Y GN	N/A		4
			Packing Ma	Packing Material Used:	SBACS	5		Lab T	Lab Tracking #:	#				Therm ID#: 727 STOCK NA	N NA
SPLP for all listed analyses minus radium	dium		Radchem s	ample(s) scr	Radchem sample(s) screened (<500 cpm):	× ×	NA	Samp	amples recei FEDEX	Samples received via:	Client	Courier Pace Courier	e Courier	Cooler 1 Therm Corr. Factor: Cooler 1 Corrected Temp:	2100
Relinquished by/Company: (Signature)	re)	Date 7/	Date/Time: 7 /12/19	1.2 00	Received by/Company: (Signature) のしん やつしし	mpany: (Signature	(1)		Date/Time:	/	200	MTJL LAB Table #:	MTJL LAB USE ONLY ole #:	(
Relinquished by/Company: (Signature)	re)	Date	Date/Time:	<u></u>	Received by/Company: (Signature)	ıny: (Signature	(1		Date/Time:			Acctnum: Template: Prelogin:		TripBlank Received: V N NA HCL MeOH TSP Other	NA 1
Relinquished by/Company: (Signature)	re)	Date	Date/Time:		Received by/Company: (Signature)	ny: (Signature	()		Date/Time:	e:		PM:		Non Conformance(s): Page:	1

Chain-of-Custoc Company: HDR Address: 440 S Church Street Suite 900, Charlotte, NC 28202															
Company: HDR Address: 440 S Church Street Suite 900, Ch	Chain-ot-Lu	ustody is a	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	JT - Compl	ete all releve	nt fields					μ	PM: KLH1		PM: KLH1 Due Date: 07	Due Date: 07/19/19
Address: 440 S Church Street Suite 900, Ch		Bill	Billing Information:	-						A		CLIENT:	92-HDR		
	narlotte, NC 2	8202							Con	tainer F	Container Press, www , ype			ו רמה בו הובו	רפח בוחוברו ואופוופאבו:
Report To: Jacob Ruffing		E	Email To: jacob.ruffing@hdrinc.com	hdrinc.com				reservat	ive Types	:: (1) nitri	c acid, (2)	sulfuric	cid, (3) hydroch	loric acid. (4) sod	Breservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide. (5) zinc acetate.
Copy To:		Site	Site Collection Info/Address: Charah	vddress: Ch	larah Brickhaven	ven	(6) r (C) a	methano	I, (7) sod im hydro	ium bisul xide, (D)	fate, (8) st TSP, (U) U	odium th	osulfate, (9) hex ed, (0) Other	ane, (A) ascorbic	(6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate, (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other
Customer Project Name/Number:		Sta	State: County/City:		Time Zone Collected:	scted:		-			Analyses			Lab Profile/Line:	
			NC / Moncure		[]PT []MT [[]CT [×]ET	E				al.			Lab Sample Rec Custody Seals	Lab Sample Receipt Checklist: Custody Seals Present/Intact ¥ N NA
	Site/Facility ID #:			Complia	nce Mo	ig?		01.0						Custody	ures Present
														Bottles Intact	
Collected By (print): Purchase Quote #:	Purchase Order # : Quote #:			DW PWS ID #: DW Location (DW PWS ID #: DW Location Code:									Correct Sufficie	s ume
Collected By (signature): Turnar	Turnaround Date Required:	equired:		Immedia [] Yes	Immediately Packed on Ice [] Yes [] No	n Ice:								Samples VOA - He	
Sample Disposal: Rush:				Field Filtered	-	able):								Samples in Hold	J Time
I Dispose as appropriate Return I Archive:	[] Same Day [] 2 Day [] 3 Day [(Expedite Char] Same Day [] Next Day [] 3 Day [] 4 Day [] 5 Day (Expedite Charges Apoly)	[] Yes Analvsis:	[]			, F		82				Residual C Cl Strips: Sample pH	hlorine Present Y N Acceptable
* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)): Drinking Wa (WP), Air (AR	ater (DW),), Tissue (Ground Water (G TS), Bioassay (B), V	W), Waste Japor (V), (water (WW), Other (OT)		fist	*OS '		526/2	ר!' דו 02			Fundering Sulfide Lead Ace	Lead Acetate Strips:
	Col	Comp /	Collected (or	Composite	oosite End	10	lluì (+C	LAB USE ONLY: Tab Samie # /	ONLY:
			Date Time	Date	Time	כ	859C		5640		0108	qinT	ITAS		
DUP	GW G	Grab 7	110/14 1220				×	-	-	-	-				yww yww
Leachate G	GW G	Grab 7/	8/19 1136				×	×	×	×	××				0W
hk	GW G	Grab 7,	111/19 (330)				×	×	×	×	××				- A I
llank		Grab 7	0251 H/H				×	×	×	×	××				or 17.
Trip Blank		Grab 7	14 1100									×			512
osite	ि मु	Comp										Ţ	XSX		
54-7 GL	_	-	7/4/19 1215				×	×	X	×	×				613
5w-1 6w		Grip 7,	14/14 1200				×	×	×	×	×				614
Customer Remarks / Special Conditions / Possible Hazards:	ossible Hazarı		Type of Ice Used:	Wet	Blue	Dry None	e e	SHO	IRT HOL	DS PRES	SHORT HOLDS PRESENT (<72 hours) :	2 hours	Z	N/A LAB	LAB Sample Temperature Info:
provied NC Solid Waste format EDD		Pac	Packing Material Used:	V	P	R	RLES	Lab	Lab Tracking #:	:# 8					Therm ID#: 777 OLI & N
-SPLP for-all-listed analyses minus radium	٢	Rad	र्य) Radchem sample(s) screened (<500 cpm):	creened (<	500 cpm):	Y N NA	AN	Sam	Samples received via	ceived vi UPS	Client	Courier	er Pace Courier		cooler 1 Temp upon Kecelpt: 2.00 Cooler 1 Therm Corr. Factor: O of Cooler 1 Corrected Temp: 2.17400 Commonts:
Relinquished by/Company: (Signature)		Date/Time:	12019	Received	(2 6つ Received by/Company: (Signature)	(Signature			Date/Time:		1200	Tat	MTJL LAB USE ONLY ole #:		(
ମ୍ନଣୋnquished by/Cómpañy: (Signature)		Date/Time:	ë	Received	Received by/Company: (Signature)	(Signature	()		Date/Time:	ime:		Acct Terr Prel	Acctnum: Template: Prelogin:		Trip Blank Received: V N NA HCC MeOH TSP Other
Relinquished by/Company: (Signature)		Date/Time:	:=	Received	Received by/Company: (Signature)	(Signature			Date/Time:	ime:		PM: PB:		N	Non Conformance(s): Page: 2 YES / NO of: 2

Document Revised: February 7, 2018 Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

Document Name: Sample Condition Upon Receipt(SCUR) Document No.: F-CAR-CS-033-Rev.06

Project **WO#: 92436599**

CLIENT: 92-HDR

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

.səlqmes

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg **Bottom half of box is to list number of bottle

		<u> </u>	Ν	15				1	Γ	Γ	T	c,	$\overline{\mathbf{N}}$	N	$\overline{\mathbf{N}}$	[N		Γ	Ν			\setminus	<u> </u>		1	$\overline{\mathbf{N}}$	
<u> </u>			$\left \right\rangle$	12						_			$\left \right\rangle$	$\left \right\rangle$	$\left \right\rangle$		$\left \right\rangle$		-	$\left \right\rangle$	$\left(\right)$	A	$\left(\right)$			1	$\left \right\rangle$	75
			[]									5	$\left \right\rangle$	$\left \right\rangle$	$\left \right\rangle$		\sum			$\left \right\rangle$	$\left \right\rangle$	A	$\left \right\rangle$			1	$\left \right\rangle$	π
			\square	M								٤.	\backslash	\sum	\square		\sum			\square	\square	\wedge	\sum			!	\square	οτ
			\backslash	XE			-					2	\backslash	\square	\sum		\sum			\square	\sum	X	\backslash		1	1	\square	6
			$ \land $	15								5.	\backslash		\backslash		\backslash			\backslash	\backslash	X	\backslash		1	١	\backslash	8
			\bigwedge	XE								3	\setminus	\backslash	\setminus		\setminus			\backslash	\backslash	N	\bigwedge]	1	\bigwedge	2
			\square	AS								٤	\setminus	\backslash	\setminus		\setminus			\backslash	\setminus	X	\setminus		1	1	\backslash	9
			Ń	12								5	$\overline{\ }$	\sum	$\overline{\ }$		\backslash			$\overline{\ }$	\square	N	N		1	١	\square	s
		1	K	2								5	\backslash	<u> </u>	\sum		$\overline{)}$			Ń	\backslash	N	Ń		1	I	$\overline{)}$	7
			$\left \right\rangle$	E.								S	$\overline{)}$	$\left(\right)$	$\left \right\rangle$		\backslash			\backslash	\backslash	N	$\left \right\rangle$		I	i	$\left(\right)$	E
-			$\left \right\rangle$	15							-	5	$\langle \rangle$	$\left(\right)$	$\overline{)}$	4	$\left(\right)$			$\langle \rangle$			$\overline{)}$	1	1	1	$\left \right\rangle$	
-			$\left \right\rangle$	XZ.								Ś	$\overline{)}$	\backslash	$\left \right\rangle$		$\left \right\rangle$	-		$\overline{)}$			$\left(\right)$			1	$\left \right\rangle$	Z
		-			-	-	-	-	-	2	د		>	>	Þ	Þ	Þ	Þ	<						8	5		ז ∓
-0690	/SGU-:	GOU-	3P3A-2		P2T-2	PST-1	//GK (3	OAK (DG9P-40 mL VOA H3PO4 (N/A)	VG9U-40 mL VOA Unp (N/A)	G9T-4	DG9H-40 mL VOA HCI (N/A)	G3A(E	G3S-2	G1S-1	G3U- 2	AG1H-1 liter Amber HCl (pH < 2)	G1U-1	VGFU-	P4C-1.	P4Z-12	P3N-2	P45-1	P1U-1	P2U-5	P3U-2	P4U-1	ltem#
40 mL	20 mL	100 ml	50 mL	RX	50 mL	25 mL	l vials	6 vials	0 mL V	10 mL	0 mL V	10 mL V	G3A)-	50 mL	liter A	50 mL	liter A	liter A	Wide-r	25 mL	25 mL I	50 mL	25 mL I	liter P	00 mL	50 mL	25 mL	
Ambei	Scintill	- Ambe	Plastic	CL4	Sterile	Sterile	per kit	per ki	IOA HE		OA Na	/OA H	250 m	Ambei	mber	Ambe	mber	mber	nouth	Plastic	Plastic	plastic	Plastic	lastic (Plastic	Plastic	Plastic	
r Unpr	ation	er Unp	c (NH2	N.H.	Plast	Plasti	L-VPH	t)-503	BPO4 (np (N/	25203	CI (N/	L Amb	r H2SC	H2SO4	r Unp	HCI (p	Unpre	ed Gla	NaOH	ZN Ac	HNO	H2SO	Jnpres	Unpr	Unpr	Unpr	
DG9U-40 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	AGOU-100 mL Amber Unpreserved vials (N/A)	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)		SP2T-250 mL Sterile Plastic (N/A – lab)	SPST-125 mL Sterile Plastic (N/A – lab)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	N/A)	A)	VG9T-40 mL VOA Na2S2O3 (N/A)	Ą	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	H < 2)	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	etate	BP3N-250 mL plastic HNO3 (pH < 2)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP1U-1 liter Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP3U-250 mL Plastic Unpreserved (N/A)	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	
d vial:	N/A)	ed via	(9.3-9		A – lat	- lab)	it (N/1	V/A)					ACI (N,	< 2)	2)	ed (N,		1 (N/A	Unpre	- 12) ((& NaC	: 2)	< 2) (C	(N/A)	3d (N/)	3d (N/)	3d (N/)	
(Z		Is (N/)	.7)		E	222	E						A)(CI-			A) (CI-) (CI-)	served	- <u>-</u>	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)		Ξ		A)	Ð	A) (CI-)	
Þ																												

# 101	evitevatervative babbe	Time preservation adjusted	Date preservation adjusted	pH upon receipt	Type of Preservative	Ol əlqma
1.						

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNK Certification Unice (i.e.

Out of hold, incorrect preservative, out of temp, incorrect containers.

Issuing Authority: Pace Carolinas Quality Office Page 1 of 2 Document Revised: February 7, 2018

F-CAR-CS-033-Rev.06 Document No.: Sample Condition Upon Receipt(SCUR) :9meN fn9mucoQ

[®]IboitylianA 906⁴

FM: KLH1 Project # WO# : 92436599

61/61/10 :eted and

CLIENT: 92-HDR

.səlqmez verified and within the acceptance range for preservation

**Bottom half of box is to list number of bottle Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

*Check mark top half of box if pH and/or dechlorination is

			Ν	Ν		1	1	1	T	T		1			N	-	Ν	<u> </u>	Γ	Ν			Ν	1	1		N	
			$\left \right\rangle$	$\left\{ \right\}$				-	-				$\left(\right)$	$\left(\right)$	$\left(\right)$					$\left \right\rangle$	$\left(\right)$	$\left(\right)$	$\left(\right)$				$\left(\right)$	72
	-		$\left\{ \right\}$	$\left\{ \right\}$	17	-		-			-		$\langle \rangle$	$\langle \rangle$	$\left(\right)$	-	$\overline{)}$			$\left \right\rangle$	$\left \right\rangle$	$\left(\right)$	$\left \right\rangle$	-	-		$\left \right\rangle$	π
	-		$\left(\right)$	$\left(\right)$						-			$\overline{)}$	$\left(\right)$	$\left(\right)$		$\left(\right)$			$\left \right\rangle$	$\left \right\rangle$	$\left(\right)$	$\left(\right)$				$\left \right\rangle$	0τ
	-		$\left(\right)$	$\left(\right)$									$\left(\right)$	$\left(\right)$	$\left(\right)$		$\overline{)}$			$\overline{)}$	\vdash	$\left\{ \right\}$	$\left(\right)$				$\left \right\rangle$	6
			$\left(\right)$	$\left(\right)$									$\overline{)}$	$\left \right\rangle$	$\overline{)}$		$\overline{)}$			$\left(\right)$	$\left(\right)$	$\left\{ \right\}$	$\left(\right)$	-			$\left \right\rangle$	8
			$\left \right\rangle$	$\left\{ \right\}$							-		$\left \right\rangle$	$\left \right\rangle$	$\left(\right)$		$\left \right\rangle$	2		$\left(\right)$	$\left \right\rangle$	\mathbb{R}^{2}	$\left \right\rangle$	-			$\left \right\rangle$	
-			$\left(\right)$	$\left \right\rangle$					-		2		$\langle \rangle$	$\left(\right)$	$\left \right\rangle$		$\left \right\rangle$			$\left(\right)$	$\left \right\rangle$	$\left \right\rangle$	$ \land $		\vdash	-	$\left \right\rangle$	9
-			$\left \right\rangle$	$\left \right\rangle$						-			$\left \right\rangle$	<u> </u>	$\left \right\rangle$		$\left \right\rangle$			$\left \right\rangle$	$\left \right\rangle$	$\left \right\rangle$	\vdash					S
-	-		$\overline{)}$	5			\vdash	-				5	$\overline{)}$	$\left \right\rangle$	$\left(\right)$		$ \land$			$\left \right\rangle$	$\left \right\rangle$	$\overline{)}$	$\left \right\rangle$	-	i	1	$\left \right\rangle$	7
			$\overline{)}$	5			-					S.	$\overline{)}$	$\overline{)}$			$\overline{)}$			$\left \right\rangle$	\sim	X.	$\left \right\rangle$	-		1	\square	E
-			$\overline{)}$	$\left \right\rangle$								7.	$\left \right\rangle$	$\left \right\rangle$	$\left \right\rangle$		\backslash	-	2	$\overline{)}$	$\overline{)}$	$\left(\right)$	$\left \right\rangle$	-	,		$\left \right\rangle$	z t
8	SA	AG	BP		SP	Sba	٧/٥	б	00	VG	٧Ģ	5	AG	AG	AG	AG	AG	AG	WO	BP	BP	E P	BP2	8P	BP	BP	BPc	Item#
9U -40	GU-20	00-100	3A-250	RAN	2T-250	5T-125	GK (3 vi	AK (6 v	9P-40 r	90-40	9T-40 n	9H-40	3A(DG:	3S- 250	1S-1 lit	3U- 250	1H- 1 lit	1U-1 lit	SFU-Wi	1C-1 25	1Z-1 25	3N-250	1S-1 25	IU-1 lit	2 U- 500	3U- 250	1U-1 25	븊
mL Am	VSGU-20 mL Scintillation vials (N/A)) mL An	mL Pla	V	mL Ste	SPST-125 mL Sterile Plastic (N/A – lab)	als per	VOAK (6 vials per kit)-5035 kit (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VG9U-40 mL VOA Unp (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	DG9H-40 mL VOA HCI (N/A)	3A)-250	AG3S-250 mL Amber H2SO4 (pH < 2)	AG1S-1 liter Amber H2SO4 (pH < 2)	mL Am	AG1H-1 liter Amber HCl (pH < 2)	er Amb	de-mou	mL Plas	mL Plas	BP3N-250 mL plastic HNO3 (pH < 2)	mL Plas	er Plast	mL Pla	mL Play	mL Play	
ber Unj	tillation	nber Ur	stic (NH		rile Pla	rile Plas	kit)-VP	r kit)-SC	НЗРО	Unp (r	Na2S2	HCI (N) mL An	ber H2	er H2S(ıber Ur	er HCl	er Unp	ithed G	stic NaC	itic ZN /	stic HN	tic H2S	ic Unpr	stic Un	stic Un	stic Un	
oreserv	vials	Ipreser	12)2504		stic (N,	tic (N/)	H/Gas)35 kit (1 (N/A)	J/A)	/N) EO	J/A)	iber NH	504 (pł	04 (pH	npreser	(pH < 2	reserve	lass jar	н (рн	Acetate	03 (рн	04 (pH	eserve	presen	presen	presen	
DG9U-40 mL Amber Unpreserved vials (N/A)	(N/A)	AGOU-100 mL Amber Unpreserved vials (N/A)	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)		SP2T-250 mL Sterile Plastic (N/A – lab)	A – lab)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	N/A)			2		AG3A(DG3A)-250 ml. Amber NH4CI (N/A)(CI-)	1 < 2)	< 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)		AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	< 2)	BP45-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP1U-1 liter Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP3U-250 mL Plastic Unpreserved (N/A)	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	
(N/A)		Is (N/A	.7)		Ξ		E						A)(CI-			A) (CI) (CI-)	served	a-)	6<) HC		5		A	Ð	A) (CI-	


# 107	Amount of Preservative badded	Time preservation adjusted	Date preservation adjusted	pH upon receipt	Type of Preservative	Ol əlqms
ð.						
						-

Out of hold, incorrect preservative, out of temp, incorrect containers.

FS

Appendix D – Electronic Data Deliverables (CD-ROM only)

Appendix E – Statistical Analysis Memo

FC

Summary of Statistical Analysis and Evaluation for SSIs

Background and Downgradient Wells

Charah, LLC

Moncure, Chatham County, North Carolina September 5, 2019

Contents

1	Intr	oduc	tion	1
2	Sta	tistica	al Analysis	3
2	2.1	Out	liers	6
	2.1	.1	Background	6
	2.1	.2	Downgradient	9
	2.2	Data	a Distribution	9
	2.3	Trer	nds	11
	2.3	.1	Background	11
	2.3	.2	Downgradient	13
2	2.4	Spa	itial Variability	14
3	Su	mmar	ry of Statistical Analysis	15
4	Eva	aluatio	on for SSIs over Background	18
5	Ap	pendi	x E.A: Downgradient Well Descriptive Statistics	26
6	Ap	pendi	x E.B: Scatter Plots for Constituents with Downgradient Statistical Outliers	42
7	Re	feren	ces	56

Tables

Table 1: Brickhaven Mine Monitoring Well Network	1
Table 2: Brickhaven Mine Monitored Constituents	
Table 3: Summary of Background Data Set Descriptive Statistics (BG-1 and BG-2)	4
Table 4: Dixon's Outlier Test Results – Background	6
Table 5: Dixon's Outlier Test Results – Downgradient	9
Table 6: Data Distributions – Background	.10
Table 7: Summary of Trend Analysis Results – Background	.13
Table 8: Summary of Trend Analysis Results – Downgradient	.13
Table 9: Summary of Background Preliminary Data Analysis	.16
Table 10: Background Concentrations for Detection Monitoring Constituents	.18
Table 11: Summary of Evaluation for SSIs over Background for Appendix I Metals (Detection	
Monitoring)	.21
Table 12: Summary of Evaluation for SSIs over Background for Appendix I VOCs (Detection	
Monitoring)	.22
Table 13: Summary of Evaluation for SSIs over Background for Appendix III Constituents	
(Detection Monitoring)	.22
Table 14: Summary of Evaluation for SSIs over Background for Appendix IV Constituents	
(Detection Monitoring)	.24
Table 15: Summary of Well MW-1 Data Set Descriptive Statistics	.26

Table 16: Summary of Well MW-2 Data Set Descriptive Statistics	28
Table 17: Summary of Well MW-3 Data Set Descriptive Statistics	
Table 18: Summary of Well MW-4 Data Set Descriptive Statistics	32
Table 19: Summary of Well MW-5 Data Set Descriptive Statistics	
Table 20: Summary of Well MW-6 Data Set Descriptive Statistics	
Table 21: Summary of Well MW-7R Data Set Descriptive Statistics	
Table 22: Summary of Well MW-8 Data Set Descriptive Statistics	40

Figures

Figure 1: Barium Concentrations (ug/L) vs. Time	7
Figure 2: Calcium Concentrations (ug/L) vs. Time	7
Figure 3: Sulfate Concentrations (mg/L) vs. Time	8
Figure 4: Total Dissolved Solids Concentrations (mg/L) vs. Time	8
Figure 5: Total Dissolved Solids (mg/L) vs. Time (MW-2)	.42
Figure 6: Calcium (ug/L) vs. Time (MW-2)	.43
Figure 7: Lithium Concentrations (ug/L) vs. Time (MW-3)	.44
Figure 8: Boron Concentrations (ug/L) vs. Time (MW-4)	.45
Figure 9: Boron Concentrations (ug/L) vs. Time (MW-5)	.46
Figure 10: Total Dissolved Solids Concentrations (mg/L) vs. Time (MW-5)	.47
Figure 11: pH (Field) (S.U.) vs. Time (MW-5)	.48
Figure 12: Chloride Concentrations (mg/L) vs. Time (MW-6)	.49
Figure 13: Fluoride (mg/L) vs. Time (MW-7R)	.50
Figure 14: pH (Field) Concentrations (S.U.) vs. Time (MW-7R)	.51
Figure 15: Sulfate Concentrations (mg/L) vs. Time (MW-7R)	.52
Figure 16: Nickel Concentrations (ug/L) vs. Time (MW-7R)	.52
Figure 17: Chromium Concentrations (ug/L) vs. Time (MW-7R)	.54
Figure 18: Nickel Concentrations (ug/L) vs. Time (MW-8)	.55

1 Introduction

This report summarizes the statistical analysis of background and downgradient groundwater quality for the Charah, LLC Brickhaven No. Mine Tract 'A' Site (Brickhaven Mine) and operating under the Facility Permit #1910-STRUC-2015 as a municipal solid waste landfill (MSWLF). Background groundwater quality was evaluated such that statistically-derived background concentrations could be established for Brickhaven Mine. Groundwater quality in downgradient wells was then compared to background concentrations to determine if a statistically significant increase (SSI) over background has occurred, as required by Section .1600 rules of the North Carolina Solid Waste Management Rules 15A NCAC 13B .1600. Sampling results used to establish background threshold values (BTVs) were obtained during sixteen monitoring events performed between October 2015 and January 2019. Downgradient sampling results from two detection monitoring rounds in January 2019 and July 2019 were used to evaluate for SSIs. The current Brickhaven Mine groundwater monitoring network is presented in **Table 1**.

Software packages ProUCL [1], NCSS [2], R [3], and SPSS [4] were used in the production of the statistics. ProUCL is offered by the USEPA, R is a free software environment, NCSS and SPSS are licensed software packages.

Background	Downgradient
BG-1	MW-1
BG-2	MW-2
	MW-3
	MW-4
	MW-5
	MW-6
	MW-7R
	MW-8

Table 1: Brickhaven Mine Monitoring Well Network

Groundwater samples collected as part of the 15A NCAC 13B .1600 monitoring program were analyzed for EPA Appendix III and Appendix IV constituents, Appendix I metals, and Appendix I volatile organic compounds (VOCs). Only non-filtered sample results were utilized for the statistical analysis of monitored constituents. A summary of constituents included in the data analysis is provided in **Table 2**.

FS

Appendix I VOCs	Appendix I Metals	Appendix III Constituents	Appendix IV Constituents
1,4-Dichlorobenzene	Copper	Boron	Antimony
Acetone	Nickel	Calcium	Arsenic
Bromodichloromethane	Silver	Chloride	Barium
Bromoform	Vanadium	Fluoride	Beryllium
Carbon disulfide	Zinc	pH (Field)	Cadmium
Chloroform		Sulfate	Chromium
Dibromochloromethane		Total Dissolved Solids	Cobalt
Dibromomethane			Fluoride
			Lead
			Lithium
			Mercury
			Molybdenum
			Radium-226
			Radium-228
			Selenium
			Thallium
			Total Radium

2 Statistical Analysis

The background sample size (i.e., quantity of qualifying samples) was evaluated per constituent. Descriptive statistics were calculated for the background data set including non-detect (ND) values and excluding ND values. When NDs were included in the data set, the method detection limit (MDL) was substituted as the ND value for simple descriptive statistics. The analysis was performed with NDs removed to better understand the central tendency and range of the detected values. A summary of the descriptive statistics for the background data set is provided in **Table 3**. Trend analyses in Section 2.3 and for the establishment of statistically-derived background concentration levels in Section 4, imputation methods using the maximum likelihood method (MLE) for NDs, regression on order statistics (ROS) or Kaplan-Meier (KM) methods, where appropriate, were used.

Following the calculation of descriptive statistics, the statistical analysis for the background data set was performed to evaluate for outliers, data distributions, and trends for Appendix I metals, Appendix I VOCs, and Appendix III and IV constituents, where data quantity and quality permit. Spatial variability between the background wells was evaluated for each constituent to assess whether the data can be pooled for establishing background concentrations. A total of seventeen samples (sixteen monitoring events from well BG-1 and one monitoring event from well BG-2) were included for the descriptive analysis of the background monitoring well results for the monitored constituents. The first monitoring round sampled in August 2015 was not included in the analysis as it was deemed not representative of the other monitoring events as the samples were tested at a different lab.

For downgradient monitoring results, the data analysis included the calculation of descriptive statistics for Appendix I metals, Appendix I VOCs, and Appendix III and IV constituents (for the data sets including and excluding ND values), followed by an evaluation of outliers and trends. A total of seventeen monitoring events performed between November 2015 and July 2019 were included for the descriptive analysis of the downgradient monitoring well results for the monitored constituents. A summary of the descriptive statistics for each downgradient well is provided in **Appendix E.A**.

		Sample	No.		With NDs=MD	Ls Included		With NDs Removed				
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
					Appendix I VC	Cs						
1,4-Dichlorobenzene	ug/L	17	17	0.260	0.330	0.322	0.330					
Acetone	ug/L	17	17	6.20	10.0	9.55	10.0					
Bromodichloromethane	ug/L	17	17	0.180	0.260	0.189	0.180					
Bromoform	ug/L	17	17	0.260	0.620	0.302	0.260					
Carbon disulfide	ug/L	17	17	0.400	1.20	1.11	1.20					
Chloroform	ug/L	17	17	0.140	2.30	0.394	0.140					
Dibromochloromethane	ug/L	17	17	0.210	0.410	0.234	0.210					
Dibromomethane	ug/L	17	17	0.210	0.460	0.239	0.210					
Appendix I Metals												
Copper	ug/L	17	17	2.50	2.50	2.50	2.50					
Nickel	ug/L	17	17	2.50	2.50	2.50	2.50					
Silver	ug/L	17	17	2.50	2.50	2.50	2.50					
Vanadium	ug/L	17	12	2.50	5.50	3.30	2.50	5.10	5.50	5.22	5.10	
Zinc	ug/L	17	16	5.00	10.0	5.29	5.00	10.0	10.0	10.0	10.0	
				Арр	endix III Cons	tituents						
Boron	ug/L	17	8	0.570	7.50	4.06	5.50	5.50	7.50	6.46	6.10	
Calcium	ug/L	17	0	23,900	89,600	32,912	29,000	23,900	89,600	32,912	29,000	
Chloride	mg/L	17	0	213	311	269	277	213	311	269	277	
Fluoride	mg/L	17	0	0.100	0.170	0.131	0.130	0.100	0.170	0.131	0.130	
pH (Field)	S.U.	13	0	6.24	6.80	6.55	6.52	6.24	6.80	6.55	6.52	
Sulfate	mg/L	17	0	15.1	64.7	21.4	18.6	15.1	64.7	21.4	18.6	
Total Dissolved Solids	mg/L	17	0	546	2,630	762	643	546	2,630	762	643	
				Арр	endix IV Cons	tituents						
Antimony	ug/L	17	17	3.80	3.90	3.86	3.90					

Table 3: Summary of Background Data Set Descriptive Statistics (BG-1 and BG-2)

	Sample No.				With NDs=MD	Ls Included	With NDs Removed				
Constituent	Unit	Size	of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Arsenic	ug/L	17	17	2.50	5.00	3.97	5.00				
Barium	ug/L	17	0	123	443	324	329	123	443	324	329
Beryllium	ug/L	17	17	0.500	0.500	0.500	0.500				
Cadmium	ug/L	17	17	0.500	0.500	0.500	0.500				
Chromium	ug/L	17	17	2.50	2.50	2.50	2.50				
Cobalt	ug/L	17	17	2.50	2.50	2.50	2.50				
Fluoride	mg/L	17	0	0.100	0.170	0.131	0.130	0.100	0.170	0.131	0.130
Lead	ug/L	17	17	2.50	2.50	2.50	2.50				
Lithium	ug/L	17	0	12.1	36.8	20.2	17.9	12.1	36.8	20.2	17.9
Mercury	ug/L	17	17	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	17	16	2.50	6.80	2.75	2.50	6.80	6.80	6.80	6.80
Radium-226	pCi/L	16	0	-0.206	0.800	0.355	0.360				
Radium-228	pCi/L	16	0	0.0108	1.29	0.633	0.645				
Selenium	ug/L	17	17	5.00	5.00	5.00	5.00				
Thallium	ug/L	17	16	0.0200	13.7	2.59	0.0600	13.7	13.7	13.7	13.7
Total Radium	pCi/L	16	0	0.271	2.09	1.00	0.957				

Notes:

1. ND = not detected above the laboratory method detection limit.

MDL = method detection limit. 2.

"--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL. 3.

4.

Numbers are displayed using the same number of significant figures as reported by the laboratory. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs. 5.

2.1 Outliers

Outliers are values that are not representative of the population from which they are sampled. The background and downgradient data sets were screened for outliers using Dixon's outlier test, which is suitable for data sets containing less than 25 samples. The outlier test was conducted using a significance of one percent. For constituents that had NDs, the NDs were removed prior to testing for outliers.

2.1.1 Background

Statistical outliers were identified in the background data set evaluated for three Appendix III constituents (calcium, sulfate, and total dissolved solids) and one Appendix IV constituent (barium). The constituent concentrations identified as statistical outliers were sampled from the newly installed background well BG-2, except for total dissolved solids, and are listed in **Table 4**.

Well	Constituent	Constituent Type	Potential Outlier Value	Units	Sampling Event	Sample Date
	Total Dissolved Solids	Appendix III	2,630	mg/L	R10	4/3/2017
BG-1	Total Dissolved Solids	Appendix III	546	mg/L	R17	1/22/2019
	Calcium	Appendix III	89,600	ug/L	R17	1/22/2019
BG-2	Sulfate	Appendix III	64.7	mg/L	R17	1/22/2019
	Barium	Appendix IV	123	ug/L	R17	1/22/2019

Table 4: Dixon's Outlier Test Results – Background

A visual inspection of concentration vs. time scatter plots for barium (**Figure 1**), calcium (**Figure 2**), sulfate (**Figure 3**), and total dissolved solids (**Figure 4**) reveal the presence of the potential outliers. The statistical outliers were investigated as possible data entry or measurement errors. The values were all within one order of magnitude of other observations and deemed correct. Although the elevated values appears as a statistical outliers, it is within a reasonable range of the remaining concentrations throughout the monitoring period and should not be removed from the data set at this time for purposes of determining background concentrations. Given the variable nature of groundwater samples, the small sample sizes and that it is common for groundwater quality samples to have very low or very high concentrations over time, statistical outliers are expected but do not necessarily signify that the outliers are from different distributions. As additional background samples are collected over time, the variability in concentrations will be better understood. Outlier test results may change and earlier observations thought to be outliers may no longer be outliers.

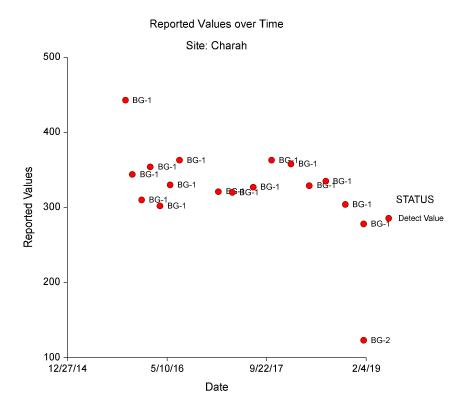
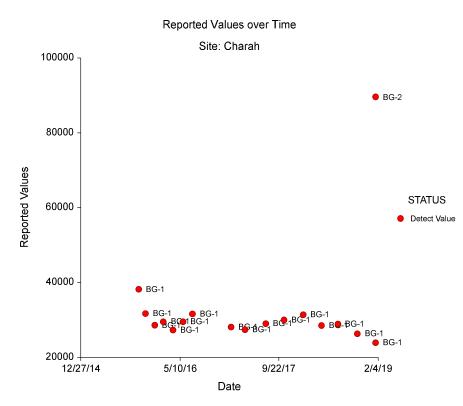
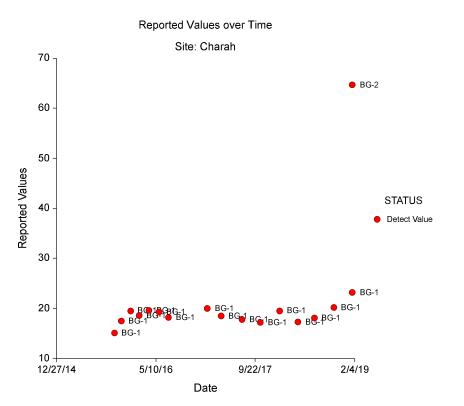




Figure 1: Barium Concentrations (ug/L) vs. Time

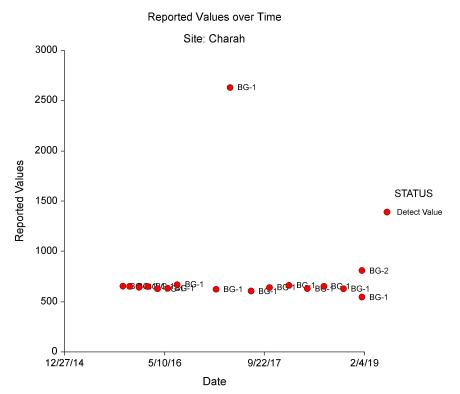


Figure 3: Sulfate Concentrations (mg/L) vs. Time

2.1.2 Downgradient

Statistical outliers were identified for Appendix I metals, Appendix III and Appendix IV constituents in the data sets evaluated for downgradient monitoring wells throughout the monitoring period, and are listed in **Table 5**.

Well	Constituent	Constituent Type	Potential Outlier Value	Units	Sampling Event	Sample Date
MW-2	Total Dissolved Solids	App. III	257	mg/L	R03	11/19/2015
10100-2	Calcium	App. III	1,300	ug/L	R07	5/27/2016
MW-3	Lithium	App. IV	236	ug/L	R12	10/18/2017
MW-4	Boron	App. III	165	ug/L	R12	10/17/2017
	Boron	App. III	39.3	ug/L	R09	1/23/2017
MW-5	Total Dissolved Solids	App. III	1,160	mg/L	R12	10/17/2017
	pH (Field)	App. III	6.25	S.U.	R19	7/9/2019
MW-6	Chloride	App. III	15.3	mg/L	R06	4/5/2016
	Fluoride	App. III	0.320	mg/L	R11	7/20/2017
	pH (Field)	App. III	9.60	S.U.	R11	7/20/2017
MW-7R	Sulfate	App. III	51.2	mg/L	R11	7/20/2017
	Nickel	App. I Metals	880	ug/L	R19	7/10/2019
	Chromium	App. IV	1,940	ug/L	R19	7/10/2019
MW-8	Nickel	App. I Metals	42.1	ug/L	R09	1/24/2017

Table 5: Dixon's Outlier Test Results – Downgradient

A visual inspection of concentration vs. time scatter plots for constituents included in the outliers listed in **Table 5** reveal the presence of the potential outliers.¹ Following review of the sampling protocols and field sampling records, there were no obvious reasons for the outliers noted on the sampling dates. The value for each statistical outlier listed above is within a reasonable range of the remaining concentrations for each constituent throughout the monitoring period. The variability in concentrations will be better understood as additional samples are obtained.

2.2 Data Distribution

Groundwater data was fitted to known distribution models using Goodness-of-Fit (GOF) tests incorporated into ProUCL. For data sets comprised of 50 or fewer samples, ProUCL's GOF module incorporates the Shapiro-Wilk GOF test to determine normal or lognormal distribution and Anderson-Darling to determine gamma distribution. Normal, lognormal and gamma distributions are parametric distributions. If a data set could not be fit with any of these three parametric distributions, it was considered to follow a nonparametric distribution. Note that

¹ See Appendix E.B for scatter plots of constituents with downgradient statistically-derived outliers.

ProUCL does not provide GOF results for data sets with less than three detected values due to insufficient data. For purposes of estimating background concentrations, these data sets were treated under non-parametric distribution assumptions with the maximum detected value chosen to represent the background concentrations. In addition, the data for total radium is set to nonparametric as the MDL values were not provided by the laboratory. Data distributions are listed in **Table 6**.

Constituent	Sample Size	No. of NDs	Distribution Fit ¹
	Appendix I V	DCs	
1,4-Dichlorobenzene	17	17	Nonparametric
Acetone	17	17	Nonparametric
Bromodichloromethane	17	17	Nonparametric
Bromoform	17	17	Nonparametric
Carbon disulfide	17	17	Nonparametric
Chloroform	17	17	Nonparametric
Dibromochloromethane	17	17	Nonparametric
Dibromomethane	17	17	Nonparametric
Appendix I Metals			
Copper	17	17	Nonparametric
Nickel	17	17	Nonparametric
Silver	17	17	Nonparametric
Vanadium	17	12	Nonparametric
Zinc	17	16	Nonparametric
	Appendix III Cons	tituents	
Boron	17	8	Parametric
Calcium	17	0	Nonparametric
Chloride	17	0	Parametric
Fluoride	17	0	Parametric
pH (Field)	13	0	Parametric
Sulfate	17	0	Nonparametric
Total Dissolved Solids	17	0	Nonparametric
1	Appendix IV Cons	stituents	
Antimony	17	17	Nonparametric
Arsenic	17	17	Nonparametric
Barium	17	0	Nonparametric
Beryllium	17	17	Nonparametric
Cadmium	17	17	Nonparametric
Chromium	17	17	Nonparametric

Table 6: Data Distributions – Background

Constituent	Sample Size	No. of NDs	Distribution Fit ¹
Cobalt	17	17	Nonparametric
Fluoride	17	0	Parametric
Lead	17	17	Nonparametric
Lithium	17	0	Parametric
Mercury	17	17	Nonparametric
Molybdenum	17	16	Nonparametric
Radium-226	16	0	Nonparametric
Radium-228	16	0	Nonparametric
Selenium	17	17	Nonparametric
Thallium	17	16	Nonparametric
Total Radium	16	0	Nonparametric

¹Best fit is based on detected data.

2.3 Trends

2.3.1 Background

Background constituent concentrations in groundwater should demonstrate stationary conditions through time, free of trends. Constituents were analyzed for trends within the data set using a maximum likelihood estimate (MLE) regression for constituents which followed parametric distributions and Mann-Kendall tests for those that were treated under nonparametric distributional assumptions. The MLE regression can be applied to data sets that can be fitted to a specific distribution model and that contain NDs with multiple MDLs. The Mann-Kendall test is suitable for data series with no discernable distributions and only one MDL value for NDs.

Constituents treated under nonparametric data assumptions (either tested as nonparametric or having more than 50 percent NDs) and with multiple MDLs or with less than three detected values were not assessed for trends. A summary of the trend analysis results for constituents with sufficient detected values in the background data set is provided in

Table 7.

The background well regression analysis showed a potential increasing trend for one Appendix III constituent (fluoride) and a potential decreasing trend for two Appendix III constituents (boron and chloride) and one Appendix IV constituent (barium). There were no increasing or decreasing trends identified for other monitoring constituents with sufficient data quantity and quality for testing with the MLE analysis or Mann-Kendall test. Although statistical trends were identified for boron, barium, chloride, and fluoride, the results can be misleading due to the short duration of the sampling program.

Table 7: Summary of Trend Analysis Results – Background

Constituent	Trend				
Appendix III Constituents					
Boron	↓				
Chloride	↓				
Fluoride	↑				
Appendix IV	Constituents				
Barium	Ļ				
Fluoride	↑				

2.3.2 Downgradient

Trends were also evaluated for constituents in each downgradient well using the same methods as described above for the background data set. Trends were identified for certain constituents at select monitoring well locations, and should be monitored as additional downgradient groundwater data are collected at the site. A summary of the statistical trends identified within the downgradient data set is provided in **Table 8**.

•	Downgradient Well with Increasing or Decreasing Trend							
Constituent	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7R	MW-8
			Append	lix I Metals				
Copper		Ļ	\downarrow					
Nickel			\downarrow					
Vanadium			Ļ					
Zinc		Ļ						
			Appendix II	I Constituents				
Boron			\downarrow					
Calcium				\downarrow				\downarrow
Chloride	1		Ļ					\downarrow
Fluoride			↑					
pH (Field)				↓			↓	↑
Sulfate	Ļ	Ļ	↑	↑		\downarrow	↓	↑
Total Dissolved Solids	↑			↓				
			Appendix IV	/ Constituents				
Antimony		\downarrow	\downarrow					
Barium				↑	1	\downarrow	\downarrow	\downarrow
Chromium			Ļ					
Fluoride			↑					
Lithium	↑			↑		Ļ	Ļ	Ļ

Table 8: Summary of Trend Analysis Results – Downgradient

Constituent	Downgradient Well with Increasing or Decreasing Trend							
Constituent	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7R	MW-8
Molybdenum		↓	Ļ					
Radium-226	Ļ			↓				
Total Radium	\downarrow			\downarrow				

2.4 Spatial Variability

Spatial variability refers to identifying whether or not there are statistically identifiable differences in mean concentrations or variance levels across the well field (i.e., the pooled background data). The results from background wells BG-1 and BG-2 were assessed to determine if it is appropriate to pool the data and use it to calculate background concentrations. The sampling round from well BG-2 was compared to the BTVs established in 2018 with the BG-1 well concentrations. The majority of the concentrations in BG-2 were below the former BTVs, therefore no evidence of spatial variability was identified. The constituents in BG-2 will be monitored as additional background groundwater data are collected at the site.

3 Summary of Statistical Analysis

A summary of the statistical analysis results is provided in **Table 9** and discussed below.

- The statistical outliers identified for barium, calcium, sulfate, and total dissolved solids should not be removed from the data set to be used for developing background concentrations for the site at this time.
- For the background data set, all of the Appendix I VOCs are 100 percent NDs and will be treated under nonparametric distribution assumptions with the maximum MDL chosen to represent background.
- For the background data set, all of the five Appendix I metals exhibited high percentages of NDs and will be treated under nonparametric distribution assumptions with the maximum detected value chosen to represent background, until additional results can be included in the data sets. For the background data set, there are currently sufficient data to fit the Appendix III constituents to known parametric distribution models (e.g., gamma, lognormal, or normal) using GOF tests, except for calcium, sulfate, and total dissolved solids, which are nonparametric. Statistical tests conducted under parametric distribution assumptions have more power to detect an SSI when compared to tests conducted under nonparametric distribution assumptions.
- For the background data set, eleven of the seventeen Appendix IV constituents exhibited high percentages of NDs and will be treated under nonparametric distribution assumptions with the maximum detected value chosen to represent background, until additional results can be included in the data sets. The data for radium-226, radium-228 and total radium are set to a nonparametric distribution as the MDL values were not provided by the laboratory. Currently, the background data sets for fluoride and lithium can be fitted to known parametric distribution models using GOF tests.
- Based on the small data set and short duration of the monitoring program, results from the outlier and trend analyses should be considered preliminary until additional sample results are included in the data set and re-evaluated.
- At this time, for the purpose of calculating background concentrations and testing for SSIs over background for Appendix I metals, and Appendix III and IV constituents, results from seventeen samples (sixteen monitoring events taken during October 2015 to January 2019 from BG-1 and one monitoring event taken January 2019 from BG-2) were used. The statistically-derived background concentrations and the evaluation for SSIs over background for Appendix I VOCs, Appendix I metals, and Appendix III and Appendix IV constituents are included in Section 4.

Table 9: Summary of Background Preliminary Data Analysis

Constituent	Statistical Outlier	Nonparametric Data Distribution	Trend
	Appendix I V	OCs	
1,4-Dichlorobenzene		\checkmark	
Acetone		✓	
Bromodichloromethane		\checkmark	
Bromoform		\checkmark	
Carbon disulfide		✓	
Chloroform		✓	
Dibromochloromethane		✓	
Dibromomethane		✓	
	Appendix I Me	etals	
Copper		✓	
Nickel		✓	
Silver		✓	
Vanadium		✓	
Zinc		√	
A	ppendix III Cons	stituents	
Boron			✓
Calcium	✓	✓	
Chloride			✓
Fluoride			✓
Sulfate	✓	✓	
Total Dissolved Solids	✓	✓	
А	ppendix IV Cons	stituents	
Antimony		✓	
Arsenic		✓	
Barium	✓	✓	✓
Beryllium		✓	
Cadmium		✓	
Chromium		✓	
Cobalt		✓	
Fluoride			✓
Lead		~	
Mercury		✓	
Molybdenum		✓	
Radium-226		✓	
Radium-228		✓	

Constituent	Statistical Outlier	Nonparametric Data Distribution	Trend
Selenium		✓	
Thallium		✓	
Total Radium		\checkmark	

 \checkmark Constituent was flagged during the statistical analysis

4 Evaluation for SSIs over Background

Based on the statistical evaluations performed, background threshold values (BTVs) were determined for the detection monitoring program at the site for Appendix I metals, and Appendix III and IV constituents. Note that BTVs were not calculated for Appendix I VOCs as all of these constituents were 100 percent non-detects. For constituents that have all ND background values, the maximum MDL is chosen to represent background and the double quantification rule (DQR) is used to evaluate whether or not there is an SSI. The BTV provided for detection monitoring constituents is the statistically-derived background concentration (i.e., upper prediction limit [UPL]), the maximum detected value or the maximum MDL depending on the level of censorship in each of the background samples. For pH (field), both the UPL and the lower prediction limit (LPL) were computed as pH values above or below the prediction limits at the downgradient wells can be considered statistically significant. The test significance level per constituent has been estimated such that the cumulative false positive rate over all constituent/well pair comparisons is approximately ten percent. The number of verification samples per constituent has been selected to provide sufficient statistical power to detect an SSI when an SSI as occurred conditional to the background sample size, its distributional properties, and the total number of statistical test comparisons. The calculated background concentrations, or BTVs, for each detection monitoring constituent is provided below in Table 10.

Constituent	Unit No. of Verification Samples.		BTV
			(UPL)
	Appendix I	VOCs	
1,4-Dichlorobenzene	ug/L	na	0.330
Acetone	ug/L	na	10.0
Bromodichloromethane	ug/L	na	0.260
Bromoform	ug/L	na	0.620
Carbon disulfide	ug/L	na	1.20
Chloroform	ug/L	na	2.30
Dibromochloromethane	ug/L	na	0.410
Dibromomethane	ug/L	na	0.460
	Appendix I	Metals	
Copper	ug/L	na	2.50
Nickel	ug/L	na	2.50
Silver	ug/L	na	2.50
Vanadium	ug/L	3	5.50
Zinc	ug/L	3	10.0
	Appendix III Co	nstituents	

Table 10: Background Concentrations for Detection Monitoring Constituents

Constituent	Unit	No. of Verification Samples.	BTV (UPL)
Boron	ug/L	1	9.26
Calcium	ug/L	3	89,600
Chloride	mg/L	1	355
Fluoride	mg/L	1	0.189
pH (Field)	S.U.	1	6.05 - 7.07*
Sulfate	mg/L	3	64.7
Total Dissolved Solids	mg/L	3	2,630
	Appendix IV Co	onstituents	
Antimony	ug/L	na	3.90
Arsenic	ug/L	na	5.00
Barium	ug/L	3	443
Beryllium	ug/L	na	0.500
Cadmium	ug/L	na	0.500
Chromium	ug/L	na	2.50
Cobalt	ug/L	na	2.50
Fluoride	mg/L	1	0.189
Lead	ug/L	na	2.50
Lithium	ug/L	1	42.7
Mercury	ug/L	na	0.100
Molybdenum	ug/L	3	6.80
Radium-226	pCi/L	3	0.800
Radium-228	pCi/L	3	1.29
Selenium	ug/L	na	5.00
Thallium	ug/L	3	13.7
Total Radium	pCi/L	3	2.09

Note:

* indicates the lower bound of the pH range is the lower prediction limit (LPL).

Italic concentration indicates a non-detect value and that the DQR is recommended for statistical evaluation.

Downgradient sampling results from the first detection monitoring round in January 2019 and the second detection monitoring round in July 2019 were used to test for SSIs. For constituents that have all ND background values, the DQR is applied; that is, an SSI is registered for the well-constituent pair if the downgradient concentrations exhibit detects in two consecutive sampling events. The downgradient sampling results collected in April 2019 were used to assess if an SSI occurred for detected constituents with all ND background values in the first detection monitoring round. For the second detection monitoring round, constituents under the DQR were flagged if they exhibited detect results. If the downgradient concentrations for these constituents remain as detects in the consecutive sampling event, then they will be considered

SSIs. The downgradient concentrations compared to the BTVs are summarized below in **Table 11** through

Table 14. Eight monitoring wells (MW-1 through MW-8) were installed and sampled (October 2015) prior to ash placement, thus representing a sample of pre-ash conditions at the site. The range of the concentrations of the pre-ash conditions are included in the tables below as a relative comparison to the current downgradient conditions.

Table 11: Summary of Evaluation for SSIs over Background for Appendix I Metals	
(Detection Monitoring)	

		Appendix I	Metals		
	Copper	Nickel	Silver	Vanadium	Zinc
Unit	ug/L	ug/L	ug/L	ug/L	ug/L
BTV (UPL)	2.50	2.50	2.50	5.50	10.0
Pre-Ash Range	2.50 - 16.4	2.50 - 18.2	2.50 - 2.50	2.50 - 9.90	5.00 - 106
Well		First Detection	n Monitoring R	ound Results	
MW-1	2.50	2.50	2.50	2.50	<u>14.7</u>
MW-2	<u>17.2</u>	<u>9.70</u>	2.50	<u>7.60</u>	<u>31.1</u>
MW-3	<u>36.0</u>	<u>86.0</u>	2.50	<u>13.9</u>	<u>42.7</u>
MW-4	2.50	2.50	2.50	2.50	<u>29.4</u>
MW-5	2.50	2.50	2.50	2.50	5.00
MW-6	2.50	2.50	2.50	2.50	<u>17.7</u>
MW-7R	2.50	2.50	2.50	2.50	<u>10.7</u>
MW-8	2.50	2.50	2.50	2.50	<u>13.6</u>
Well	S	Second Detecti	on Monitoring	Round Result	S
MW-1	2.10	0.900	2.50	1.30	3.90
MW-2					
MW-3					
MW-4	2.10	<u>5.10</u>	2.50	1.30	3.90
MW-5	<u>5.60</u>	0.900	2.50	1.30	<u>11.4</u>
MW-6	<u>5.50</u>	0.900	2.50	1.30	3.90
MW-7R	<u>79.3</u>	<u>880</u>	2.50	<u>18.8</u>	<u>53.4</u>
MW-8	2.10	0.900	2.50	1.30	3.90

Notes:

Wells MW-2 and MW-3 were dry in the second detection monitoring round.

Italic concentration indicates a non-detect value.

Underlined concentration indicates a detect value in the first consecutive evaluation for constituents with 100% background non-detects.

Bold and underlined concentration indicates an SSI over background.

Table 12: Summary of Evaluation for SSIs over Background for Appendix I VOCs (Detection Monitoring)

				Appendix I V	/OCs			
	1,4-Dichloro- benzene	Acetone	Bromo- dichloro- methane	Bromo- form	Carbon disulfide	Chloroform	Dibro- mochloro- methane	Dibromo- methane
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
BTV (UPL)	0.330	10.0	0.260	0.620	1.20	2.30	0.410	0.460
Pre-Ash Range	0.330 - 0.330	10.0 - 10.0	0.180 - 0.180	0.260 - 0.260	1.20 - 1.20	0.140 - 1.80	0.210 - 0.210	0.210 - 0.210
Well			Firs	t Detection Mo	onitoring Round	Results		
MW-1	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-2	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-3	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-4	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-5	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-6	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-7R	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-8	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
Well			Seco	nd Detection N	Ionitoring Rour	nd Results		
MW-1	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-2								
MW-3								
MW-4	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-5	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-6	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-7R	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460
MW-8	0.260	6.20	0.260	0.620	0.400	2.30	0.410	0.460

Notes:

Wells MW-2 and MW-3 were dry in the second detection monitoring round.

Italic concentration indicates a non-detect value.

<u>Underlined</u> concentration indicates a detect value in the first consecutive evaluation for constituents with 100% background non-detects. <u>Bold and underlined</u> concentration indicates an SSI over background.

Table 13: Summary of Evaluation for SSIs over Background for Appendix III Constituents (Detection Monitoring)

		A	ppendix III Cor	stituents								
	Boron Calcium Chloride Fluoride pH (Field) Sulfate TDS											
Unit	ug/L	ug/L	mg/L	mg/L	S.U.	mg/L	mg/L					
BTV (UPL)	9.3	89,600	355	0.189	6.05 - 7.07*	65	2,630					
Pre-Ash Range	6.20 - 53.1	16,900 - 185,000	22.2 - 1,160	0.0200 - 0.590	6.17 - 7.70	3.70 - 199	296 - 2,770					
Well	First Detection Monitoring Round Results											

		A	opendix III Cor	stituents			
	Boron	Calcium	Chloride	Fluoride	pH (Field)	Sulfate	TDS
Unit	ug/L	ug/L	mg/L	mg/L	S.U.	mg/L	mg/L
BTV (UPL)	9.3	89,600	355	0.189	6.05 - 7.07*	65	2,630
Pre-Ash Range	6.20 - 53.1	16,900 - 185,000	22.2 - 1,160	0.0200 - 0.590	6.17 - 7.70	3.70 - 199	296 - 2,770
MW-1	2.60	<u>205,000</u>	<u>756</u>	0.160	6.41	8.00	1,510
MW-2	<u>39.1</u>	<u>207,000</u>	<u>1,200</u>	<u>0.260</u>	<u>7.53</u>	<u>130</u>	2,590
MW-3	2.60	<u>194,000</u>	<u>1,120</u>	<u>0.420</u>	<u>7.13</u>	<u>80.2</u>	2,360
MW-4	2.60	64,300	<u>485</u>	<u>0.290</u>	6.10	12.2	1,170
MW-5	2.60	13,700	22.2	<u>0.570</u>	<u>7.26</u>	2.90	261
MW-6	2.60	34,400	229	<u>0.400</u>	6.23	48.7	649
MW-7R	2.60	89,100	289	0.110	<u>7.27</u>	18.3	820
MW-8	2.60	<u>110,000</u>	<u>377</u>	0.0500	6.94	7.90	814
Well		S	Second Detectio	n Monitoring Roui	nd Results		
MW-1	2.60	<u>216,000</u>	<u>855</u>	0.170	6.50	7.20	1,800
MW-2							
MW-3							
MW-4	2.60	69,400	<u>467</u>	<u>0.340</u>	6.23	11.2	1,170
MW-5	12.8	14,300	22.3	<u>0.600</u>	6.25	3.50	254
MW-6	2.60	37,800	208	<u>0.380</u>	6.15	25.8	574
MW-7R	12.8	<u>102,000</u>	275	0.120	<u>7.29</u>	16.8	790
MW-8	12.8	<u>94,600</u>	309	0.0500	7.01	7.50	768

<u>Notes:</u> Wells MW-2 and MW-3 were dry in the second detection monitoring round.

Italic concentration indicates a non-detect value.

Underlined concentration indicates a detect value in the first consecutive evaluation for constituents with 100% background non-detects. Bold and underlined concentration indicates an SSI over background.

 * indicates the lower bound of the pH range is the LPL. The upper bound is the UPL.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 14: Summary of Evaluation for SSIs over Background for Appendix IV Constituents (Detection Monitoring)

							Арре	ndix IV Con	stituents								
	Anti- mony	Arsenic	Barium	Bery- Ilium	Cadmium	Chromium	Cobalt	Fluoride	Lead	Lithium	Mercury	Moly- bdenum	Radium- 226	Radium- 228	Selen- ium	Thall- ium	Total Radium
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/L	ug/L	ug/L	ug/L	ug/L	pCi/L	pCi/L	ug/L	ug/L	pCi/L
BTV (UPL)	3.90	5.00	443	0.500	0.500	2.50	2.50	0.189	2.50	42.7	0.100	6.80	0.800	1.29	5.00	13.7	2.09
Pre- Ash Range	3.80 - 12.0	2.50 - 2.50	117 - 1,240	0.500 - 0.500	0.500 - 0.500	2.50 - 33.9	2.50 - 7.00	0.0200 - 0.590	2.50 - 6.30	7.50 - 70.4	0.100 - 0.100	2.50 - 20.6	0.0774 - 0.820	0.0230 - 1.56	5.00 - 5.00	5.00 - 5.00	0.304 - 2.93
Well							First D	etection Mor	nitoring Ro	ound Results	;						
MW-1	3.90	5.00	242	0.500	0.500	2.50	2.50	0.160	2.50	30.9	0.100	2.50	0.607	0.737	5.00	0.0600	1.34
MW-2	3.90	5.00	360	0.500	0.500	<u>14.0</u>	2.50	<u>0.260</u>	2.50	<u>94.1</u>	0.100	<u>7.90</u>	<u>1.21</u>	<u>1.49</u>	5.00	0.0600	<u>2.70</u>
MW-3	3.90	5.00	<u>715</u>	0.500	0.500	<u>179</u>	<u>6.20</u>	<u>0.420</u>	<u>7.30</u>	<u>72.6</u>	0.100	<u>12.0</u>	<u>1.92</u>	<u>2.00</u>	5.00	0.0600	<u>3.92</u>
MW-4	3.90	5.00	268	0.500	0.500	2.50	2.50	<u>0.290</u>	2.50	25.4	0.100	2.50	<u>0.913</u>	<u>1.35</u>	5.00	0.0600	<u>2.26</u>
MW-5	3.90	5.00	123	0.500	0.500	2.50	2.50	<u>0.570</u>	2.50	8.00	0.100	2.50	0.108	0.695	5.00	0.0600	0.803
MW-6	3.90	5.00	89.7	0.500	0.500	<u>5.30</u>	2.50	<u>0.400</u>	2.50	27.9	0.100	2.50	0.00	0.628	5.00	0.0600	0.628
MW-7R	3.90	5.00	255	0.500	0.500	<u>6.50</u>	2.50	0.110	2.50	25.4	0.100	2.50	<u>0.987</u>	1.01	5.00	0.120	2.00
MW-8	3.90	5.00	<u>1,170</u>	0.500	0.500	2.50	2.50	0.0500	2.50	21.7	0.100	2.50	0.743	1.20	5.00	0.0600	1.94
Well							Second	Detection M	onitoring F	Round Resul	lts						
MW-1	3.00	4.70	261	0.200	0.400	1.00	1.10	0.170	1.60	35.6	0.100	14.5	1.03	1.45	4.70	0.0600	2.48
MW-2																	
MW-3																	
MW-4	3.00	4.70	319	0.200	0.400	1.00	1.10	<u>0.340</u>	1.60	26.8	0.100	18.7	0.760	0.556	4.70	0.0600	1.32
MW-5	3.00	4.70	153	0.200	0.400	1.00	1.10	<u>0.600</u>	1.60	11.6	0.100	0.900	-0.0968	0.987	4.70	0.0600	0.987
MW-6	3.00	4.70	47.8	0.200	0.400	1.00	1.10	<u>0.380</u>	1.60	22.7	0.100	8.30	0.681	0.685	4.70	0.0600	1.37
MW-7R	<u>13.6</u>	4.70	395	0.200	0.400	<u>1,940</u>	<u>20.4</u>	0.120	<u>6.80</u>	31.7	0.100	<u>49.5</u>	0.316	0.686	4.70	0.0600	1.00
MW-8	3.00	4.70	<u>976</u>	0.200	0.400	1.00	1.10	0.0500	1.60	21.1	0.100	5.20	0.105	0.535	4.70	0.0600	0.640

Notes:

Wells MW-2 and MW-3 were dry in the second detection monitoring round.

Italic concentration indicates a non-detect value.

Underlined concentration indicates a detect value in the first consecutive evaluation for constituents with 100% background non-detects.

Bold and underlined concentration indicates an SSI over background.

FS

In the first detection monitoring round, SSIs were found for six Appendix III constituents (boron, calcium, chloride, fluoride, pH (field), and sulfate), eight Appendix IV constituents (barium, chromium, fluoride, lithium, molybdenum, radium-226, radium-228, and total radium), and four Appendix I metals (copper, nickel, vanadium and zinc). No SSI was registered for the two Appendix IV constituents (cobalt and lead) because, although the non-detected constituents had detect values in the January 2019 detection monitoring round, the consecutive sampling event in April 2019 did not exhibit detects for these constituents at the specified downgradient wells. - When results of the January 2019 sampling event are compared to the pre-ash sampling results from those eight wells, current downgradient groundwater constituent concentrations are generally similar to concentrations reported prior to ash placement. Of the seventeen constituents with observed SSIs, eight of them are within the range of pre-ash conditions.

In the second detection monitoring round, wells MW-2 and MW-3 were dry and have no samples. SSIs were found for four Appendix III constituents (calcium, chloride, fluoride, and pH (field)), three Appendix IV constituents (barium, fluoride, and molybdenum), and two Appendix I metals (vanadium and zinc). Four Appendix IV constituents (antimony, chromium, cobalt, and lead) and two Appendix I metals (copper and nickel) were flagged as potential SSIs as they are non-detected constituents that had detected values. If the downgradient concentrations for these constituents exhibit detects in the consecutive sampling event, then an SSI would be registered. When results of the July 2019 sampling event are compared to the pre-ash sampling results from those six wells, current downgradient groundwater constituent concentrations are generally similar to concentrations reported prior to ash placement. Of the eight constituents with observed SSIs, four of them are within the range of pre-ash conditions.

Depending on the data distribution of the constituent, the BTVs have been computed to allow for one to three verification samples. With verification sampling, the validity of the SSIs can be confirmed.

5 Appendix E.A: Downgradient Well Descriptive Statistics

Table 15: Summary of Well MW-1 Data Set Descriptive Statistics

	11.5	o 1 o:			With NDs=MDI	_s Included			With NDs R	emoved	
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
				Арр	endix I VOCs						
1,4-Dichlorobenzene	ug/L	17	17	0.260	0.330	0.318	0.330				
Acetone	ug/L	17	17	6.20	10.0	9.33	10.0				
Bromodichloromethane	ug/L	17	17	0.180	0.260	0.194	0.180				
Bromoform	ug/L	17	17	0.260	0.620	0.324	0.260				
Carbon disulfide	ug/L	17	17	0.400	1.20	1.06	1.20				
Chloroform	ug/L	17	17	0.140	2.30	0.521	0.140				
Dibromochloromethane	ug/L	17	17	0.210	0.410	0.245	0.210				
Dibromomethane	ug/L	17	17	0.210	0.460	0.254	0.210				
				Арр	endix I Metals						
Copper	ug/L	17	16	2.10	7.20	2.75	2.50	7.20	7.20	7.20	7.20
Nickel	ug/L	17	14	0.900	13.3	3.54	2.50	5.60	13.3	8.93	7.90
Silver	ug/L	17	17	2.50	2.50	2.50	2.50				
Vanadium	ug/L	17	13	1.30	7.80	3.29	2.50	5.00	7.80	6.15	5.90
Zinc	ug/L	17	10	3.90	28.0	9.79	5.00	10.2	28.0	16.8	14.7
				Append	ix III Constituents	\$					
Boron	ug/L	17	9	0.570	14.5	5.33	2.90	6.20	14.5	9.63	9.65
Calcium	ug/L	17	0	43,100	216,000	120,600	124,000	43,100	216,000	120,600	124,000
Chloride	mg/L	17	0	167	855	478	455	167	855	478	455
Fluoride	mg/L	17	1	0.0200	0.170	0.133	0.130	0.110	0.170	0.140	0.135
pH (Field)	S.U.	15	0	6.41	7.30	6.71	6.70	6.41	7.30	6.71	6.70
Sulfate	mg/L	17	0	6.20	11.2	8.22	7.50	6.20	11.2	8.22	7.50
Total Dissolved Solids	mg/L	17	0	569	1,800	1,036	1,020	569	1,800	1,036	1,020
				Append	ix IV Constituent	S					
Antimony	ug/L	17	16	3.00	6.10	3.95	3.90	6.10	6.10	6.10	6.10
Arsenic	ug/L	17	17	2.50	5.00	4.10	5.00				

Constituent	Unit	Sample Size	No. of NDs		With NDs=MD	Ls Included			With NDs R	emoved	
Conditation				Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Barium	ug/L	17	0	61.9	261	162	155	61.9	261	162	155
Beryllium	ug/L	17	17	0.200	0.500	0.482	0.500				
Cadmium	ug/L	17	17	0.400	0.500	0.494	0.500				
Chromium	ug/L	17	12	1.00	18.4	4.62	2.50	6.60	18.4	10.0	7.40
Cobalt	ug/L	17	17	1.10	2.50	2.42	2.50				
Fluoride	mg/L	17	1	0.0200	0.170	0.133	0.130	0.110	0.170	0.140	0.135
Lead	ug/L	17	17	1.60	2.50	2.45	2.50				
Lithium	ug/L	17	0	19.2	36.1	30.2	31.2	19.2	36.1	30.2	31.2
Mercury	ug/L	17	17	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	17	16	2.50	14.5	3.21	2.50	14.5	14.5	14.5	14.5
Radium-226	pCi/L	16	0	-0.188	1.03	0.386	0.345				
Radium-228	pCi/L	16	0	-0.0467	1.45	0.558	0.502				
Selenium	ug/L	17	17	4.70	5.00	4.98	5.00				
Thallium	ug/L	17	17	0.0200	5.00	1.79	0.0600				
Total Radium	pCi/L	16	0	0.237	2.48	0.970	0.844				

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

しつ

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 16: Summary of Well MW-2 Data Set Descriptive Statistics

H	D	2

Constituent	Unit	Sample Size	No. of NDs		With NDs=MD	Ls Included	With NDs Removed				
Constituent	Unit	Sample Size	NO. OT NDS	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
				Арр	endix I VOCs						
1,4-Dichlorobenzene	ug/L	15	15	0.260	0.330	0.321	0.330				
Acetone	ug/L	15	15	6.20	10.0	9.49	10.0				
Bromodichloromethane	ug/L	15	15	0.180	0.260	0.191	0.180				
Bromoform	ug/L	15	15	0.260	0.620	0.308	0.260				
Carbon disulfide	ug/L	15	15	0.400	1.20	1.09	1.20				
Chloroform	ug/L	15	15	0.140	2.30	0.428	0.140				
Dibromochloromethane	ug/L	15	15	0.210	0.410	0.237	0.210				
Dibromomethane	ug/L	15	15	0.210	0.460	0.243	0.210				
				Арр	endix I Metals						
Copper	ug/L	15	10	2.50	17.2	4.53	2.50	5.00	17.2	8.58	6.60
Nickel	ug/L	15	8	2.50	54.4	11.9	2.50	8.70	54.4	22.6	15.2
Silver	ug/L	15	15	2.50	2.50	2.50	2.50				
Vanadium	ug/L	15	14	2.50	7.60	2.84	2.50	7.60	7.60	7.60	7.60
Zinc	ug/L	15	8	5.00	113	21.8	5.00	10.7	113	40.9	31.1
				Append	ix III Constituent	s					
Boron	ug/L	15	0	37.4	63.9	45.4	44.9	37.4	63.9	45.4	44.9
Calcium	ug/L	15	0	130,000	217,000	193,400	195,000	130,000	217,000	193,400	195,000
Chloride	mg/L	15	0	910	1,360	1,168	1,190	910	1,360	1,168	1,190
Fluoride	mg/L	15	1	0.0200	0.400	0.217	0.220	0.130	0.400	0.231	0.220
pH (Field)	S.U.	12	0	7.50	8.50	7.76	7.62	7.50	8.50	7.76	7.62
Sulfate	mg/L	15	0	73.3	338	191	205	73.3	338	191	205
Total Dissolved Solids	mg/L	15	0	257	3,290	2,364	2,470	257	3,290	2,364	2,470
				Append	ix IV Constituent	S					
Antimony	ug/L	15	7	3.90	12.3	6.69	5.60	5.60	12.3	9.13	9.10
Arsenic	ug/L	15	15	2.50	5.00	4.00	5.00				
Barium	ug/L	15	0	177	360	257	262	177	360	257	262
Beryllium	ug/L	15	15	0.500	0.500	0.500	0.500				
Cadmium	ug/L	15	15	0.500	0.500	0.500	0.500				

	H)
noved		

Constituent	Unit	Sampla Siza	No. of NDs		With NDs=MDI	Ls Included			With NDs R	emoved	
Constituent	Unit	Sample Size	NO. OI NDS	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	15	3	2.50	84.0	20.7	7.70	5.10	84.0	25.3	14.9
Cobalt	ug/L	15	15	2.50	2.50	2.50	2.50				
Fluoride	mg/L	15	1	0.0200	0.400	0.217	0.220	0.130	0.400	0.231	0.220
Lead	ug/L	15	15	2.50	2.50	2.50	2.50				
Lithium	ug/L	15	0	53.1	356	152	119	53.1	356	152	119
Mercury	ug/L	15	15	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	15	0	6.70	21.1	11.4	9.50	6.70	21.1	11.4	9.50
Radium-226	pCi/L	14	0	0.580	1.94	0.975	0.965				
Radium-228	pCi/L	14	0	0.433	1.75	1.23	1.27				
Selenium	ug/L	15	15	5.00	5.00	5.00	5.00				
Thallium	ug/L	15	14	0.0200	10.3	2.37	0.0600	10.3	10.3	10.3	10.3
Total Radium	pCi/L	14	0	1.12	3.02	2.21	2.36				

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 17: Summary of Well MW-3 Data Set Descriptive Statistics

0	11.11	0		With NDs=MDLs Included					With NDs Removed				
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median		
				Арр	endix I VOCs								
1,4-Dichlorobenzene	ug/L	16	16	0.260	0.330	0.321	0.330						
Acetone	ug/L	16	16	6.20	10.0	9.53	10.0						
Bromodichloromethane	ug/L	16	16	0.180	0.260	0.190	0.180						
Bromoform	ug/L	16	16	0.260	0.620	0.305	0.260						
Carbon disulfide	ug/L	16	16	0.400	1.20	1.10	1.20						
Chloroform	ug/L	16	16	0.140	2.30	0.410	0.140						
Dibromochloromethane	ug/L	16	16	0.210	0.410	0.235	0.210						
Dibromomethane	ug/L	16	16	0.210	0.460	0.241	0.210						
				Арр	endix I Metals								
Copper	ug/L	16	12	2.50	36.0	5.92	2.50	5.30	36.0	16.2	11.7		
Nickel	ug/L	16	12	2.50	86.0	11.2	2.50	5.50	86.0	37.2	28.7		
Silver	ug/L	16	16	2.50	2.50	2.50	2.50						
Vanadium	ug/L	16	14	2.50	13.9	3.58	2.50	8.40	13.9	11.2	11.2		
Zinc	ug/L	16	13	5.00	42.7	9.09	5.00	12.5	42.7	26.8	25.2		
				Append	ix III Constituents	5							
Boron	ug/L	16	7	0.570	49.4	21.0	13.2	9.70	49.4	36.3	41.9		
Calcium	ug/L	16	0	117,000	201,000	163,563	161,500	117,000	201,000	163,563	161,500		
Chloride	mg/L	16	0	893	1,280	1,094	1,085	893	1,280	1,094	1,085		
Fluoride	mg/L	16	1	0.0200	0.610	0.373	0.425	0.210	0.610	0.396	0.430		
pH (Field)	S.U.	13	0	7.10	7.50	7.27	7.30	7.10	7.50	7.27	7.30		
Sulfate	mg/L	16	0	9.10	174	79.1	84.5	9.10	174	79.1	84.5		
Total Dissolved Solids	mg/L	16	0	256	3,180	1,938	2,155	256	3,180	1,938	2,155		
				Append	ix IV Constituent	s							
Antimony	ug/L	16	9	3.90	11.4	6.36	3.90	5.80	11.4	9.53	10.1		
Arsenic	ug/L	16	16	2.50	5.00	4.06	5.00						
Barium	ug/L	16	0	353	855	611	574	353	855	611	574		
Beryllium	ug/L	16	16	0.500	0.500	0.500	0.500						
Cadmium	ug/L	16	16	0.500	0.500	0.500	0.500						

Charah, LLC Summary	harah, LLC Summary of Statistical Analysis and Evaluation for SSIs										
Constituent	Unit				With NDs=MDLs Included				With NDs R	emoved	
Constituent	Unit San	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	16	8	2.50	179	20.8	3.90	5.30	179	39.0	9.85
Cobalt	ug/L	16	15	2.50	6.20	2.73	2.50	6.20	6.20	6.20	6.20
Fluoride	mg/L	16	1	0.0200	0.610	0.373	0.425	0.210	0.610	0.396	0.430
Lead	ug/L	16	15	2.50	7.30	2.80	2.50	7.30	7.30	7.30	7.30
Lithium	ug/L	16	0	36.7	236	105	89.0	36.7	236	105	89.0
Mercury	ug/L	16	16	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	16	0	5.10	13.8	8.76	7.95	5.10	13.8	8.76	7.95
Radium-226	pCi/L	15	0	0.213	1.92	0.925	1.09				
Radium-228	pCi/L	15	0	0.387	2.27	1.46	1.70				
Selenium	ug/L	16	16	5.00	5.00	5.00	5.00				
Thallium	ug/L	16	16	0.0200	5.00	1.89	0.0450				
Total Radium	pCi/L	15	0	0.857	3.92	2.39	2.30				

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

"--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL. 3.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 18: Summary of Well MW-4 Data Set Descriptive Statistics

					With NDs=MDLs	s Included			With NDs Re	moved	
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
				Appen	idix I VOCs						
1,4-Dichlorobenzene	ug/L	16	16	0.260	0.330	0.321	0.330				
Acetone	ug/L	16	16	6.20	10.0	9.53	10.0				
Bromodichloromethane	ug/L	16	16	0.180	0.260	0.190	0.180				
Bromoform	ug/L	16	16	0.260	0.620	0.305	0.260				
Carbon disulfide	ug/L	16	16	0.400	1.20	1.10	1.20				
Chloroform	ug/L	16	16	0.140	2.30	0.410	0.140				
Dibromochloromethane	ug/L	16	16	0.210	0.410	0.235	0.210				
Dibromomethane	ug/L	16	16	0.210	0.460	0.241	0.210				
	Appendix I Metals										
Copper	ug/L	16	16	2.10	2.50	2.48	2.50				
Nickel	ug/L	16	10	2.50	6.90	3.70	2.50	5.10	6.90	5.70	5.40
Silver	ug/L	16	16	2.50	2.50	2.50	2.50				
Vanadium	ug/L	16	16	1.30	2.50	2.43	2.50				
Zinc	ug/L	16	15	3.90	29.4	6.46	5.00	29.4	29.4	29.4	29.4
				Appendix	III Constituents						
Boron	ug/L	16	8	0.570	165	13.9	4.30	5.70	165	26.3	6.60
Calcium	ug/L	16	0	17,900	69,400	52,800	62,800	17,900	69,400	52,800	62,800
Chloride	mg/L	16	0	144	567	413	489	144	567	413	489
Fluoride	mg/L	16	0	0.210	0.420	0.323	0.315	0.210	0.420	0.323	0.315
pH (Field)	S.U.	14	0	6.10	6.50	6.32	6.32	6.10	6.50	6.32	6.32
Sulfate	mg/L	16	0	3.40	12.3	8.99	10.0	3.40	12.3	8.99	10.0
Total Dissolved Solids	mg/L	16	0	395	1,260	981	1,140	395	1,260	981	1,140
				Appendix I	V Constituents						
Antimony	ug/L	16	15	3.00	5.00	3.88	3.90	5.00	5.00	5.00	5.00
Arsenic	ug/L	16	16	2.50	5.00	4.04	5.00				
Barium	ug/L	16	0	85.9	332	250	283	85.9	332	250	283
Beryllium	ug/L	16	16	0.200	0.500	0.481	0.500				
Cadmium	ug/L	16	16	0.400	0.500	0.494	0.500				

H	D	2

Constituent	Unit	Somalo Sizo		With NDs=MDLs Included				With NDs Removed			
Constituent	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
Chromium	ug/L	16	15	1.00	5.70	2.61	2.50	5.70	5.70	5.70	5.70
Cobalt	ug/L	16	12	1.10	8.40	3.41	2.50	5.30	8.40	6.50	6.15
Fluoride	mg/L	16	0	0.210	0.420	0.323	0.315	0.210	0.420	0.323	0.315
Lead	ug/L	16	16	1.60	2.50	2.44	2.50				
Lithium	ug/L	16	0	15.8	29.2	25.0	26.5	15.8	29.2	25.0	26.5
Mercury	ug/L	16	16	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	16	14	2.50	18.7	3.91	2.50	8.90	18.7	13.8	13.8
Radium-226	pCi/L	15	0	-0.120	0.913	0.417	0.424				
Radium-228	pCi/L	15	0	0.0190	1.35	0.509	0.481				
Selenium	ug/L	16	16	4.70	5.00	4.98	5.00				
Thallium	ug/L	16	16	0.0200	5.00	1.89	0.0450				
Total Radium	pCi/L	15	0	0.240	2.26	0.935	0.710		-		

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 19: Summary of Well MW-5 Data Set Descriptive Statistics

Ormaliturent	11	Commite Circo			With NDs=MDLs Included				With NDs Removed			
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
		• •		Appen	dix I VOCs							
1,4-Dichlorobenzene	ug/L	17	17	0.260	0.330	0.318	0.330					
Acetone	ug/L	17	17	6.20	10.0	9.33	10.0					
Bromodichloromethane	ug/L	17	17	0.180	0.260	0.194	0.180					
Bromoform	ug/L	17	17	0.260	0.620	0.324	0.260					
Carbon disulfide	ug/L	17	17	0.400	1.20	1.06	1.20					
Chloroform	ug/L	17	17	0.140	2.30	0.521	0.140					
Dibromochloromethane	ug/L	17	17	0.210	0.410	0.245	0.210					
Dibromomethane	ug/L	17	17	0.210	0.460	0.254	0.210					
Appendix I Metals												
Copper	ug/L	17	15	2.50	6.90	2.94	2.50	5.60	6.90	6.25	6.25	
Nickel	ug/L	17	15	0.900	9.00	3.12	2.50	8.10	9.00	8.55	8.55	
Silver	ug/L	17	17	2.50	2.50	2.50	2.50					
Vanadium	ug/L	17	17	1.30	2.50	2.43	2.50					
Zinc	ug/L	17	12	5.00	36.1	9.34	5.00	11.4	36.1	19.8	16.6	
				Appendix	III Constituents							
Boron	ug/L	17	7	0.570	39.3	9.30	10.2	9.80	39.3	13.8	11.0	
Calcium	ug/L	17	0	9,140	16,900	12,155	11,900	9,140	16,900	12,155	11,900	
Chloride	mg/L	17	0	17.6	22.3	20.0	19.7	17.6	22.3	20.0	19.7	
Fluoride	mg/L	17	0	0.410	0.680	0.527	0.520	0.410	0.680	0.527	0.520	
pH (Field)	S.U.	15	0	6.25	7.30	6.99	7.00	6.25	7.30	6.99	7.00	
Sulfate	mg/L	17	0	2.60	5.60	3.76	3.60	2.60	5.60	3.76	3.60	
Total Dissolved Solids	mg/L	17	0	194	1,160	290	235	194	1,160	290	235	
				Appendix I	V Constituents							
Antimony	ug/L	17	17	3.00	3.90	3.81	3.90					
Arsenic	ug/L	17	17	2.50	5.00	4.10	5.00					
Barium	ug/L	17	0	90.7	153	109	102	90.7	153	109	102	
Beryllium	ug/L	17	17	0.200	0.500	0.482	0.500					
Cadmium	ug/L	17	17	0.400	0.500	0.494	0.500					

	2
	-

Constituent	Unit	Sample Size	No. of NDs	With NDs=MDLs Included			With NDs Removed				
Constituent Unit	Unit			Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	17	13	1.00	16.8	4.32	2.50	5.10	16.8	10.6	10.3
Cobalt	ug/L	17	17	1.10	2.50	2.42	2.50				
Fluoride	mg/L	17	0	0.410	0.680	0.527	0.520	0.410	0.680	0.527	0.520
Lead	ug/L	17	17	1.60	2.50	2.45	2.50				
Lithium	ug/L	17	0	6.30	11.6	8.62	8.90	6.30	11.6	8.62	8.90
Mercury	ug/L	17	17	0.100	0.100	0.100	0.100				
Molybdenum	ug/L	17	17	0.900	2.50	2.41	2.50				
Radium-226	pCi/L	16	0	-0.142	0.778	0.127	0.0749				
Radium-228	pCi/L	16	0	-0.0690	1.08	0.410	0.364				
Selenium	ug/L	17	17	4.70	5.00	4.98	5.00				
Thallium	ug/L	17	16	0.0200	14.8	2.36	0.0600	14.8	14.8	14.8	14.8
Total Radium	pCi/L	16	0	0.0766	1.15	0.571	0.529				

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 20: Summary of Well MW-6 Data Set Descriptive Statistics

	D	2

	11.14				With NDs=MDLs	s Included			With NDs Re	moved	
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
				Appen	idix I VOCs						
1,4-Dichlorobenzene	ug/L	17	17	0.260	0.330	0.318	0.330				
Acetone	ug/L	17	17	6.20	10.0	9.33	10.0				
Bromodichloromethane	ug/L	17	17	0.180	0.260	0.194	0.180				
Bromoform	ug/L	17	17	0.260	0.620	0.324	0.260				
Carbon disulfide	ug/L	17	17	0.400	1.20	1.06	1.20				
Chloroform	ug/L	17	17	0.140	2.30	0.521	0.140				
Dibromochloromethane	ug/L	17	17	0.210	0.410	0.245	0.210				
Dibromomethane	ug/L	17	17	0.210	0.460	0.254	0.210				
	Appendix I Metals										
Copper	ug/L	17	16	2.50	5.50	2.68	2.50	5.50	5.50	5.50	5.50
Nickel	ug/L	17	17	0.900	2.50	2.41	2.50				
Silver	ug/L	17	17	2.50	2.50	2.50	2.50				
Vanadium	ug/L	17	17	1.30	2.50	2.43	2.50				
Zinc	ug/L	17	13	3.90	17.7	6.90	5.00	11.3	17.7	13.4	12.2
				Appendix	III Constituents						
Boron	ug/L	17	9	0.570	10.8	4.60	2.90	6.10	10.8	8.07	8.15
Calcium	ug/L	17	0	31,300	40,200	35,006	34,500	31,300	40,200	35,006	34,500
Chloride	mg/L	17	0	15.3	279	230	240	15.3	279	230	240
Fluoride	mg/L	17	0	0.180	0.520	0.395	0.410	0.180	0.520	0.395	0.410
pH (Field)	S.U.	15	0	6.15	7.00	6.51	6.50	6.15	7.00	6.51	6.50
Sulfate	mg/L	17	0	25.8	214	99.9	87.7	25.8	214	99.9	87.7
Total Dissolved Solids	mg/L	17	0	371	946	681	689	371	946	681	689
				Appendix	V Constituents						
Antimony	ug/L	17	17	3.00	3.90	3.81	3.90				
Arsenic	ug/L	17	17	2.50	5.00	4.10	5.00				
Barium	ug/L	17	0	47.8	142	106	104	47.8	142	106	104
Beryllium	ug/L	17	17	0.200	0.500	0.482	0.500				
Cadmium	ug/L	17	17	0.400	0.500	0.494	0.500				

ŀ	D	2

Constituent	Unit	Comula Ciro			With NDs=MDLs	Included			With NDs Re		
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median
Chromium	ug/L	17	15	1.00	6.00	2.78	2.50	5.30	6.00	5.65	5.65
Cobalt	ug/L	17	17	1.10	2.50	2.42	2.50				
Fluoride	mg/L	17	0	0.180	0.520	0.395	0.410	0.180	0.520	0.395	0.410
Lead	ug/L	17	17	1.60	2.50	2.45	2.50				
Lithium	ug/L	17	0	22.7	60.5	41.9	41.2	22.7	60.5	41.9	41.2
Mercury	ug/L	17	16	0.100	0.320	0.113	0.100	0.320	0.320	0.320	0.320
Molybdenum	ug/L	17	15	2.50	8.30	3.01	2.50	5.40	8.30	6.85	6.85
Radium-226	pCi/L	16	0	-0.0750	0.910	0.278	0.263				
Radium-228	pCi/L	16	0	0.148	1.07	0.641	0.654				
Selenium	ug/L	17	17	4.70	5.00	4.98	5.00				
Thallium	ug/L	17	16	0.0200	6.20	1.86	0.0600	6.20	6.20	6.20	6.20
Total Radium	pCi/L	16	0	0.148	1.47	0.929	0.913				

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 21: Summary of Well MW-7R Data Set Descriptive Statistics

E	R

		Sample Size	No. of NDs		With NDs=MDL	Included		With NDs Removed				
Constituent	Unit			Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
	Appendix I VOCs											
1,4-Dichlorobenzene	ug/L	7	7	0.260	0.330	0.300	0.330					
Acetone	ug/L	7	7	6.20	10.0	8.37	10.0					
Bromodichloromethane	ug/L	7	7	0.180	0.260	0.214	0.180					
Bromoform	ug/L	7	7	0.260	0.620	0.414	0.260					
Carbon disulfide	ug/L	7	7	0.400	1.20	0.857	1.20					
Chloroform	ug/L	7	7	0.140	2.30	1.07	0.140					
Dibromochloromethane	ug/L	7	7	0.210	0.410	0.296	0.210					
Dibromomethane	ug/L	7	7	0.210	0.460	0.317	0.210					
Appendix I Metals												
Copper	ug/L	7	5	2.50	79.3	14.1	2.50	7.10	79.3	43.2	43.2	
Nickel	ug/L	7	4	2.50	880	132	2.50	17.4	880	305	18.0	
Silver	ug/L	7	7	2.50	2.50	2.50	2.50					
Vanadium	ug/L	7	5	2.50	18.8	6.99	2.50	17.6	18.8	18.2	18.2	
Zinc	ug/L	7	5	5.00	53.4	12.7	5.00	10.7	53.4	32.0	32.0	
				Appendix	III Constituents							
Boron	ug/L	7	3	2.60	25.3	12.9	13.8	13.8	25.3	18.1	16.6	
Calcium	ug/L	7	0	74,000	102,000	87,914	89,100	74,000	102,000	87,914	89,100	
Chloride	mg/L	7	0	275	312	288	285	275	312	288	285	
Fluoride	mg/L	7	1	0.0500	0.320	0.137	0.120	0.110	0.320	0.152	0.120	
pH (Field)	S.U.	7	0	7.22	9.60	7.75	7.60	7.22	9.60	7.75	7.60	
Sulfate	mg/L	7	0	16.8	51.2	23.7	19.4	16.8	51.2	23.7	19.4	
Total Dissolved Solids	mg/L	7	0	740	855	805	809	740	855	805	809	
				Appendix	V Constituents							
Antimony	ug/L	7	6	3.90	13.6	5.29	3.90	13.6	13.6	13.6	13.6	
Arsenic	ug/L	7	7	4.70	5.00	4.96	5.00					
Barium	ug/L	7	0	50.1	395	236	251	50.1	395	236	251	
Beryllium	ug/L	7	7	0.200	0.500	0.457	0.500					
Cadmium	ug/L	7	7	0.400	0.500	0.486	0.500					

	Ð
ha	

Ormstitusent	11.14				With NDs=MDLs	Included		With NDs Removed				
Constituent	Unit	Sample Size	No. of NDs	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
Chromium	ug/L	7	1	2.50	1,940	290	9.60	6.50	1,940	338	21.3	
Cobalt	ug/L	7	6	2.50	20.4	5.06	2.50	20.4	20.4	20.4	20.4	
Fluoride	mg/L	7	1	0.0500	0.320	0.137	0.120	0.110	0.320	0.152	0.120	
Lead	ug/L	7	6	2.50	6.80	3.11	2.50	6.80	6.80	6.80	6.80	
Lithium	ug/L	7	0	5.60	31.7	22.5	24.7	5.60	31.7	22.5	24.7	
Mercury	ug/L	7	7	0.100	0.100	0.100	0.100					
Molybdenum	ug/L	7	5	2.50	49.5	11.6	2.50	19.5	49.5	34.5	34.5	
Radium-226	pCi/L	6	0	-0.0590	0.987	0.304	0.195					
Radium-228	pCi/L	6	0	-0.454	1.01	0.505	0.636					
Selenium	ug/L	7	7	4.70	5.00	4.96	5.00					
Thallium	ug/L	7	5	0.0280	0.480	0.115	0.0600	0.120	0.480	0.300	0.300	
Total Radium	pCi/L	6	0	0.0741	2.00	0.895	0.793					

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

3. "--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL.

4. Numbers are displayed using the same number of significant figures as reported by the laboratory.

5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

Charah, LLC | Summary of Statistical Analysis and Evaluation for SSIs Table 22: Summary of Well MW-8 Data Set Descriptive Statistics

ŀ	D	2

Constituent	11-24	Consulta Cino	No. of NDs		With NDs=MDI	_s Included		With NDs Removed				
	Unit	Sample Size		Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
Appendix I VOCs												
1,4-Dichlorobenzene	ug/L	17	17	0.260	0.330	0.318	0.330					
Acetone	ug/L	17	17	6.20	10.0	9.33	10.0					
Bromodichloromethane	ug/L	17	17	0.180	0.260	0.194	0.180					
Bromoform	ug/L	17	17	0.260	0.620	0.324	0.260					
Carbon disulfide	ug/L	17	17	0.400	1.20	1.06	1.20					
Chloroform	ug/L	17	17	0.140	2.30	0.521	0.140					
Dibromochloromethane	ug/L	17	17	0.210	0.410	0.245	0.210					
Dibromomethane	ug/L	17	17	0.210	0.460	0.254	0.210					
Appendix I Metals												
Copper	ug/L	17	16	2.10	10.2	2.93	2.50	10.2	10.2	10.2	10.2	
Nickel	ug/L	17	13	0.900	42.1	6.46	2.50	10.8	42.1	19.8	13.1	
Silver	ug/L	17	17	2.50	2.50	2.50	2.50					
Vanadium	ug/L	17	17	1.30	2.50	2.43	2.50					
Zinc	ug/L	17	9	3.90	50.7	15.2	5.00	13.6	50.7	26.8	20.4	
				Append	ix III Constituents	5						
Boron	ug/L	17	8	0.570	12.8	6.39	8.90	8.70	12.3	9.74	9.30	
Calcium	ug/L	17	0	94,600	194,000	125,665	115,000	94,600	194,000	125,665	115,000	
Chloride	mg/L	17	0	309	939	496	396	309	939	496	396	
Fluoride	mg/L	17	17	0.0200	0.0500	0.0359	0.0500					
pH (Field)	S.U.	15	0	6.70	7.20	6.95	7.00	6.70	7.20	6.95	7.00	
Sulfate	mg/L	17	0	4.40	8.00	6.56	6.50	4.40	8.00	6.56	6.50	
Total Dissolved Solids	mg/L	17	0	224	1,530	981	934	224	1,530	981	934	
				Append	ix IV Constituent	s						
Antimony	ug/L	17	11	3.00	10.1	5.24	3.90	6.50	10.1	7.83	7.55	
Arsenic	ug/L	17	17	2.50	5.00	4.10	5.00					
Barium	ug/L	17	0	976	1,550	1,202	1,190	976	1,550	1,202	1,190	
Beryllium	ug/L	17	17	0.200	0.500	0.482	0.500					
Cadmium	ug/L	17	17	0.400	0.500	0.494	0.500					

Charah, LLC | Su of Statiatical A ~ COL

n, LLC Summary of Statistical Analysis and Evaluation for SSIs												
Constituent	Unit	Sampla Siza	No. of NDs		With NDs=MDI	Ls Included		With NDs Removed				
	Unit	Sample Size	NO. OF NDS	Minimum	Maximum	Mean	Median	Minimum	Maximum	Mean	Median	
Chromium	ug/L	17	13	1.00	82.0	10.8	2.50	16.6	82.0	38.1	26.9	
Cobalt	ug/L	17	17	1.10	2.50	2.42	2.50					
Fluoride	mg/L	17	17	0.0200	0.0500	0.0359	0.0500					
Lead	ug/L	17	17	1.60	2.50	2.45	2.50					
Lithium	ug/L	17	0	19.2	50.1	29.7	27.5	19.2	50.1	29.7	27.5	
Mercury	ug/L	17	16	0.100	0.370	0.116	0.100	0.370	0.370	0.370	0.370	
Molybdenum	ug/L	17	15	2.50	5.60	2.84	2.50	5.20	5.60	5.40	5.40	
Radium-226	pCi/L	16	0	0.00	1.16	0.537	0.510					
Radium-228	pCi/L	16	0	0.239	1.20	0.752	0.648					
Selenium	ug/L	17	17	4.70	5.00	4.98	5.00					
Thallium	ug/L	17	16	0.0200	8.80	2.01	0.0600	8.80	8.80	8.80	8.80	

1.94

1.29

1.38

Notes:

1. ND = not detected above the method detection limit.

2. MDL = method detection limit.

Total Radium

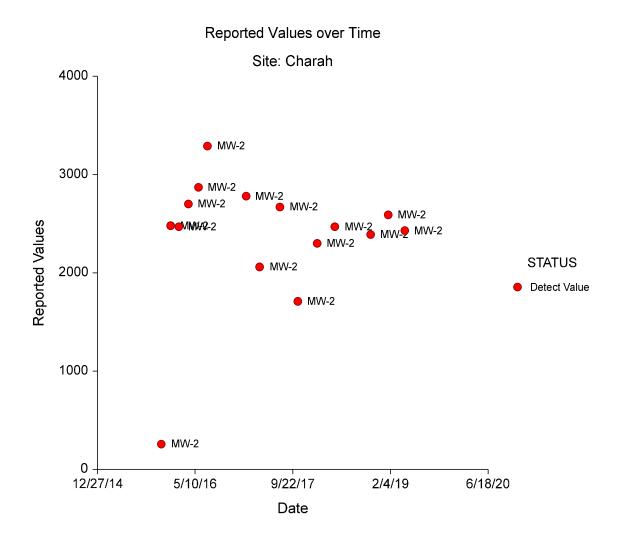
"--" indicates all results for the respective constituent were NDs, or with the case of total radium, NDs were flagged but the laboratory did not provide a value for the MDL. 3.

0.454

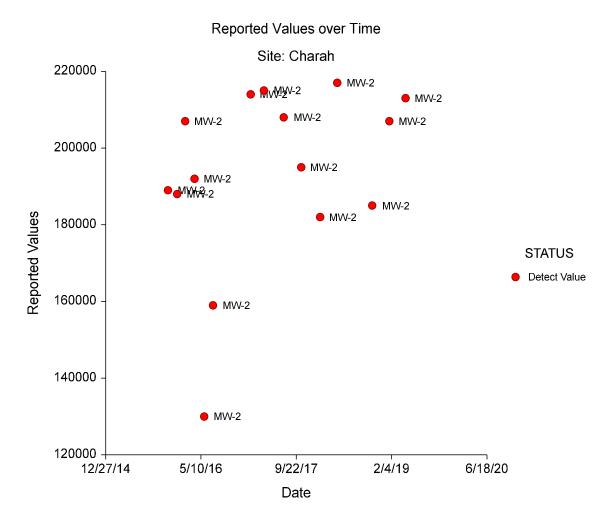
0

Numbers are displayed using the same number of significant figures as reported by the laboratory. 4.

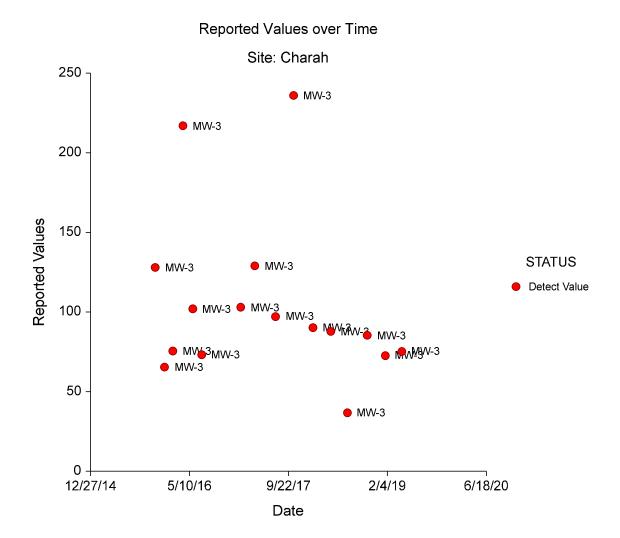
16

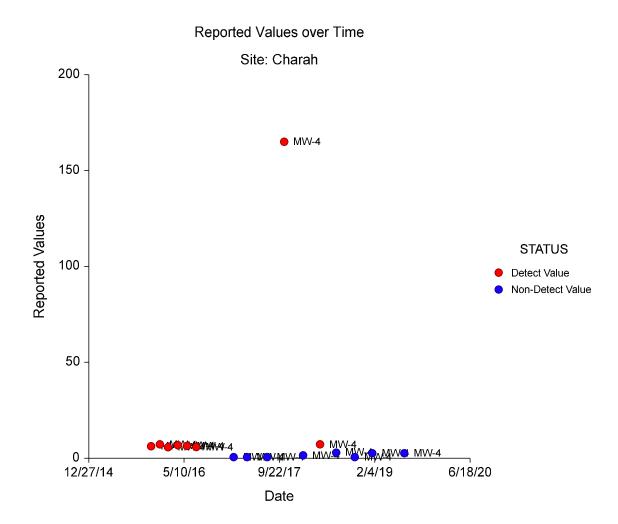

pCi/L

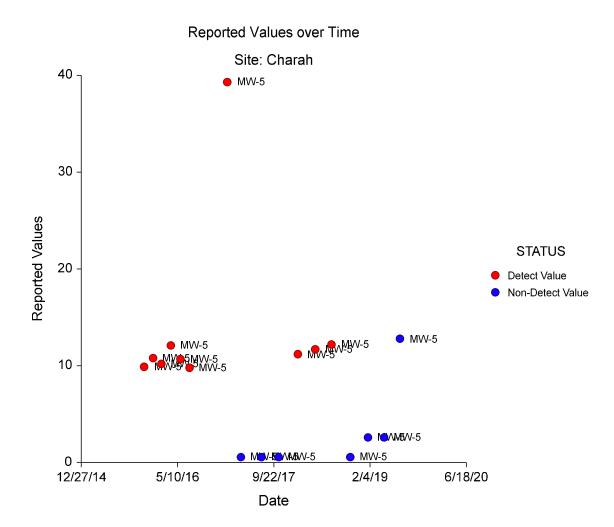
5. If a constituent had 100% detections the descriptive statistics provided above are identical for the data including NDs and excluding NDs.

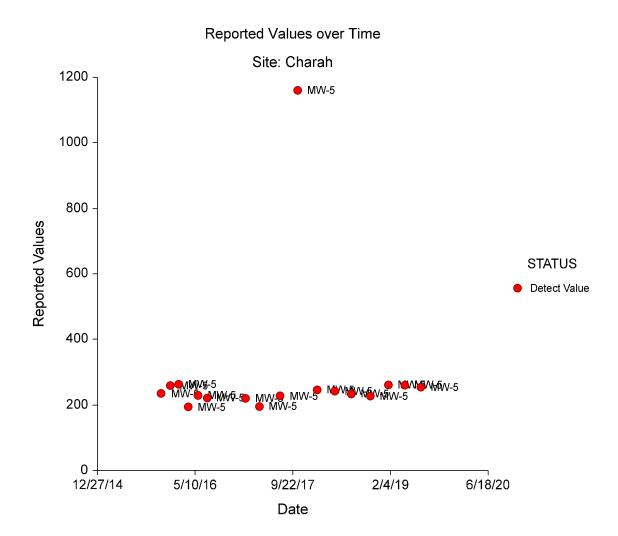


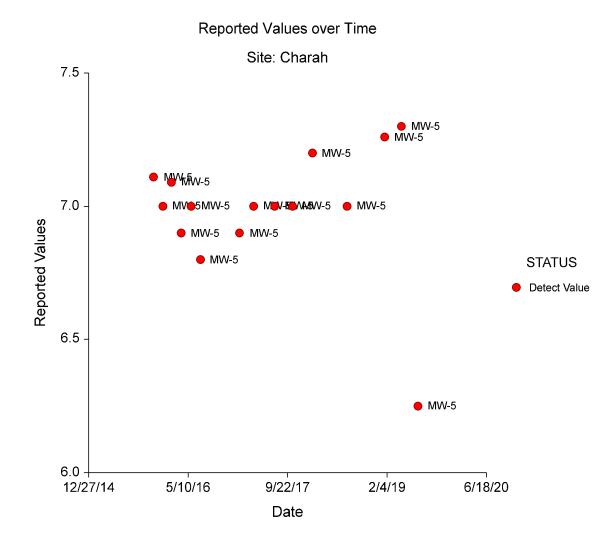
6 Appendix E.B: Scatter Plots for Constituents with Downgradient Statistical Outliers

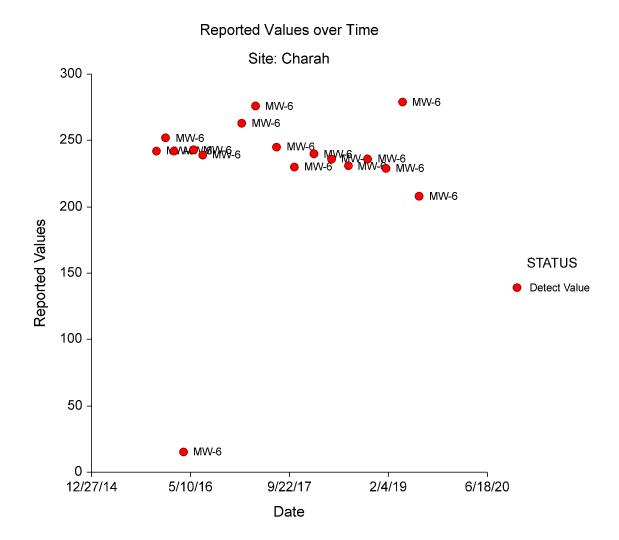


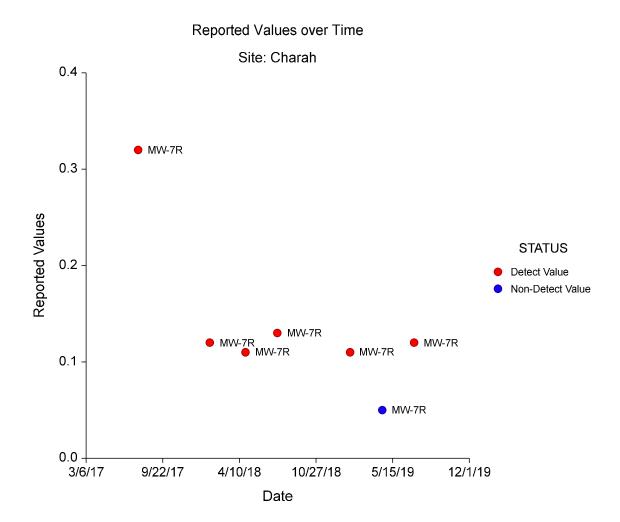


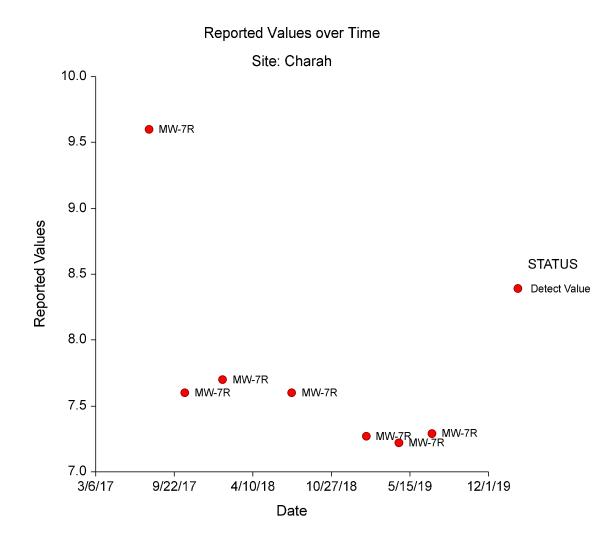


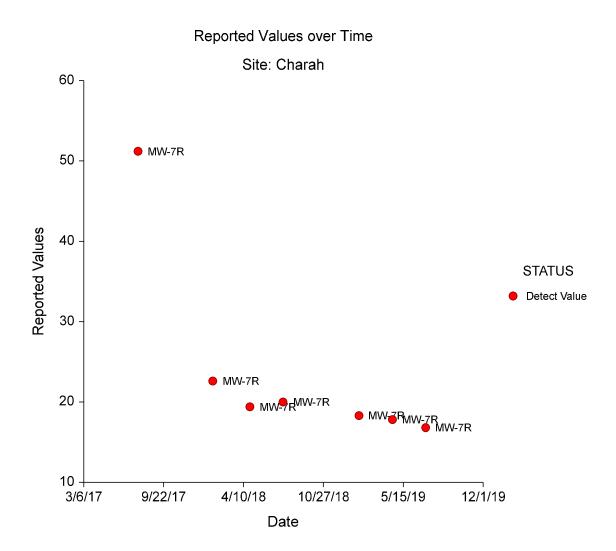

Figure 8: Boron Concentrations (ug/L) vs. Time (MW-4)

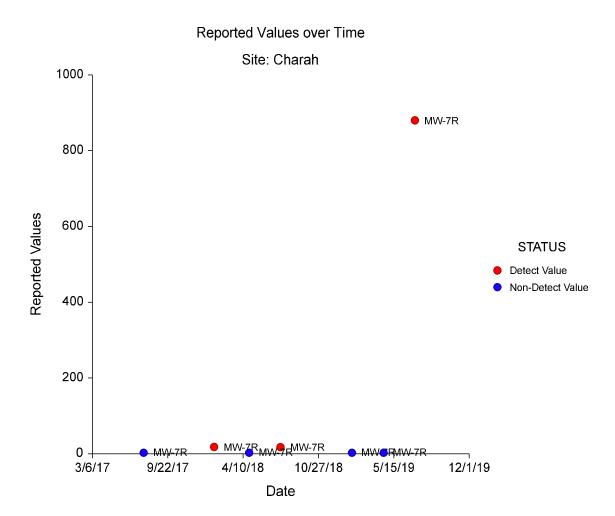


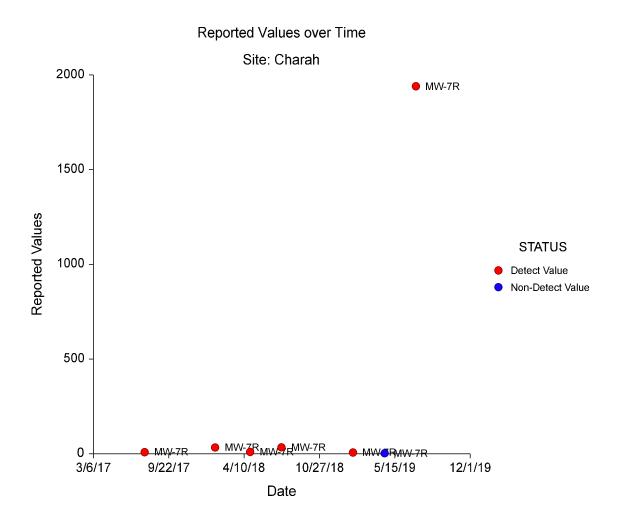


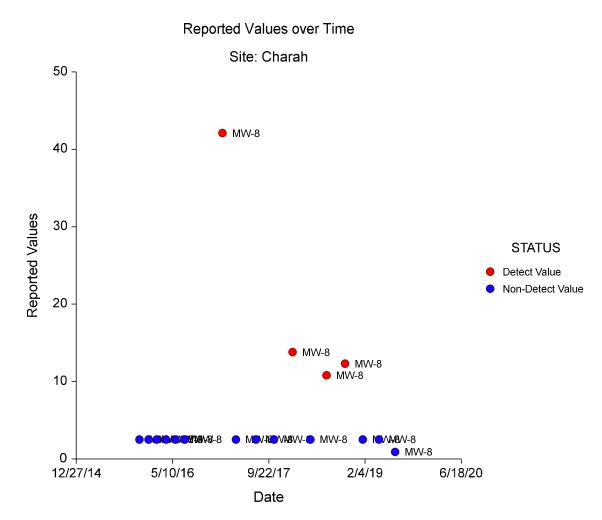

Figure 11: pH (Field) (S.U.) vs. Time (MW-5)




Figure 13: Fluoride (mg/L) vs. Time (MW-7R)




Figure 15: Sulfate Concentrations (mg/L) vs. Time (MW-7R)



7 References

[1] Singh, A. and Ashok Singh. ProUCL 5.1.002 Technical Guide Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R07/041, 2015.

[2] NCSS 9 Statistical Software (2013). NCSS, LLC. Kaysville, Utah, USA, ncss.com/software/ncss.

[3] R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

[4] IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

FC

FC

HDR Engineering, Inc. of the Carolinas 440 S Church Street, Suite 1000 Charlotte, NC 28202-2075 704.338.6700 NC License F0116

hdrinc.com

© 2019 HDR, Inc., all rights reserved

Attachment C – Groundwater and Surface Water Assessment Work Plan

FX

Groundwater and Surface Water Assessment Work Plan

Brickhaven No. 2 Mine Track "A" Structural Fill

1910-STRUC-2015

Moncure, Chatham County, North Carolina August 16, 2019

Mark P. Filardi, L.G. #1886

This page intentionally left blank.

Contents

1	Intro	oduction	1
	1.1	Purpose	1
	1.2	Regulatory Compliance	1
	1.3	Site Location and Operation	2
2	Site	Setting	4
	2.1	Site Topography and Geographical Setting	4
	2.2	Geologic and Hydrogeologic Setting	4
	2.2.	1 Regional Geology	4
	2.2.2	2 Site Geology	5
	2.2.3	3 Regional Hydrogeology	6
	2.2.4	4 Site Hydrogeology	7
	2.3	Receptor Information	9
3	Prop	posed Assessment Plan	10
	3.1	Ash Sampling and Analyses	10
	3.2	Groundwater	11
	3.2.	1 Monitoring Well Installation	11
	3.2.2	2 Groundwater Sampling and Analysis	13
	3.3	Surface Water	14
	3.3.	1 Baseflow Evaluation	14
	3.3.2	2 Surface Water Flow Measurements	15
	3.3.3	3 Surface Water Sampling	15
	3.4	Geochemical Evaluation	16
	3.5	Groundwater Modeling	17
4	Rep	orting	19

FSS

Tables

Table 1 - Chronology of Subsurface Exploration	7
Table 2 – Vertical Hydraulic Gradients	
Table 3 – Proposed Assessment Plan	
Table 4 – Groundwater and Surface Water Quality Parameters and Constituent Analytical	
Methods	14
Table 5 – Proposed Surface and Free Water Sample Locations	15

Figures

Figure 1 – Site Location Map

Figure 2 – Potentiometric Surface Map – January 2019

Figure 3 – Sample Location Map

FC

1 Introduction

1.1 Purpose

On behalf of Charah Solutions, Inc. (Charah), HDR Engineering, Inc. of the Carolinas (HDR) has prepared this Groundwater and Surface Water Assessment Work Plan (Plan) to evaluate the nature and extent of exceedances of groundwater and surface water quality criteria at the Brickhaven No. 2 Mine Tract "A" Structural Fill site (Site) in Moncure, Chatham County, North Carolina.

The work proposed herein were designed to obtain additional geologic, hydrogeologic, and water quality data to advance the current understanding of the site-specific conceptual site model (CSM); supplement the Alternate Source Demonstration (ASD) of exceedances that was previously submitted to the NCDEQ on March 29, 2019; and to respond to the request of the North Carolina Department of Environmental Quality (NCDEQ) dated June 21, 2019.

1.2 Regulatory Compliance

In accordance with the Water Quality Monitoring Plan¹ (WQMP) approved by the North Carolina Department of Environment and Natural Resources (NCDENR) in 2014, and operating under Facility Permit #1910-STRUT-2015, Charah is required to monitor groundwater and surface water quality at 11 monitoring wells (MW-1 through MW-8, BG-1, and BG-2) and two surface water locations (SW-1 and SW-2). Groundwater samples are analyzed for constituents listed in NCDEQ Solid Waste Appendix I and II, 40 CFR 257 Appendix III, and 40 CFR 257 Appendix IV.

Charah began monitoring groundwater and surface water quality in August 2015, prior to placement of coal combustion products (CCP) into the lined structural fill. One additional sampling event was conducted in October 2015 prior to commencement of CCP placement in November 2015. Subsequent to the October 2015 event, Charah conducted six additional background sampling events. From January 2017 through July 2019, Charah conducted five semi-annual detection monitoring events. On June 21, 2019, Charah received correspondence from the NCDEQ Solid Waste Section that requests Charah submit this Plan in accordance with 15A NCAC 02L .0106 and 15A NCAC 02B .0211 and .0216. NCDEQ cited exceedances of groundwater quality standards for barium, chloride, chromium, cobalt, total dissolved solids (TDS), and vanadium, and exceedances of surface water quality standards for arsenic, cobalt, copper, lead, TDS, and zinc as cause for needing the Plan.

¹ Design Hydrogeologic Report – Addendum, Revision 2. Brickhaven Mine Reclamation Structural Fill Site. 1315 Moncure-Flatwood Road, Moncure, North Carolina. Buxton Environmental, Inc. March 6, 2015.

Pursuant to 15A NCAC 02L .106(g), and 15A NCAC 2B.0211 and 0216, this site assessment is designed to:

- Evaluate whether placement of structural fill or generation of leachate is the cause of exceedances;
- Evaluate imminent hazards to public health and safety and actions taken to mitigate them in accordance with Paragraph (f) of this Rule;
- Identify receptors and significant exposure pathways;
- Evaluate the extent of groundwater and surface water impacts and significant factors affecting constituent transport; and,
- Identify geological and hydrogeological features influencing the movement, chemical, and physical character of constituents.

The work proposed in this plan will provide the information sufficient to satisfy the requirements of the rule. However, uncertainties may exist due, in part, to the following factors:

- Contaminants of concern are known to be naturally occurring in soil and groundwater throughout the Piedmont Physiographic Provence, which encompasses the Site;
- The natural variations and the complex nature of the geological and hydrogeological characteristics involved with the movement, chemical, and physical character of the contaminants;
- Use of the Site by General Shale Brick, Inc. (General Shale) and its predecessor companies as a clay mine for brick production from 1985 until the mine permit was transferred to Green Meadows, LLC in 2015 and potential geochemical changes that these activities may have imparted on soil and groundwater; and,
- Potential geochemical impacts on the surface water from the wastewater discharge from: 1) General Shale under National Pollutant Discharge Elimination System (NPDES) permit to the unnamed tributary (east) of the Site and 2) the farm pond south of the Site. Both discharges are upstream of surface water sample location SW-1.

Charah submits this workplan without any admission that its activities have been the cause of any detected exceedances.

1.3 Site Location and Operation

The Site is located in Chatham County, approximately four miles southeast of Moncure, North Carolina (**Figure 1**). The owner of the Site is Green Meadow, LLC (Green Meadow). Charah is responsible for the operation and maintenance of the Structural Fill. The mine property is approximately 301 acres in total; of which 145 acres is permitted for structural fill placement of CCP in a lined storage facility.

The property located within the Structural Fill area was previously owned by General Shale, which operated the Site and an adjacent property as a clay mine beginning in 1985 for their offsite brick manufacturing facility. Mined clay was stockpiled and then transported approximately 3.5 miles south to Brickhaven, North Carolina for brick manufacturing. The area immediately surrounding the Site primarily consists of rural residential (approximately 2,500 feet east, 1,000 feet southeast, and 1,000 feet southwest), commercial, industrial, wooded and agricultural properties. According to information obtained from the Chatham County GIS website (October 2015), municipal water is available to the surrounding area.

Charah began CCP placement in the first composite liner containment system (Cell 1, Sub Cell 1A) on October 23, 2015. CCP placement has occurred in Cell 1, Cell 2, Cell 6A, Cell 6B, and Cell 6C. Charah has placed just over 7.3 million tons of CCP material in the structural fill at the time of this report. CCP materials (including fly ash, bottom ash, boiler slag, and/or flue gas desulfurization materials) were initially brought to the site by truck from October 2015 until transportation was changed to rail in January 2016. The CCP originated from the Duke Energy Carolinas (DEC) Riverbend Steam Station and Duke Energy Progress (DEP) L.V. Sutton Energy Complex (Sutton Plant).

Leachate (i.e., product generated from the liquids present in the fill at the time of placement and/or stormwater that infiltrates the fill) is managed on-site through collection, storage, and disposal of the resultant liquid. Green Meadow has approved pump and haul permits to dispose of leachate at the City of Sanford's Big Buffalo Creek Wastewater Treatment Plant and the Town of Spring Lake's South Harnett Regional Wastewater Treatment Plant.

2 Site Setting

2.1 Site Topography and Geographical Setting

Based on review of the 1993 USGS topographic quadrangle (**Figure 2**) and GIS mapping, the topography of the site and immediately surrounding area can be characterized by moderately rolling hills, which are dissected by dendritic creeks. Prior to mining by General Shale, a topographic ridge was present within the site, extending from the northwestern corner of the present-day structural fill toward the southeast. Thus, historic drainage was to the north/northwest/west and to the northeast/east/southeast away from the ridge, as shown on **Figure 3**.

2.2 Geologic and Hydrogeologic Setting

2.2.1 Regional Geology

The site is located within the Piedmont physiographical province of North Carolina, which is a northeast-southwest trending region extending from New York to Alabama.

According to the 1985 North Carolina Geologic Map prepared by the North Carolina Geological Survey, the site is located in the Triassic Basin Belt of the Piedmont physiographic province. The basement rocks of the Triassic Basin Belt include conglomerate, sandstone, mudstone, limestone, coal, and shale. The majority of the subject property is located within the Sanford Formation which contains conglomerate, fanglomerate, sandstone, and mudstone. The far western portion of the site is located in the Cumnock Formation which contains sandstone, mudstone, gray and black coal, and carbonaceous shale. The Triassic Basin is bounded by felsic metavolcanic rock within the Carolina Slate Belt approximately 6.5 miles to the northwest; and is contacted by metamorphosed granite and biotite gneiss and schist of the Raleigh Belt along a normal fault approximately 2.5 miles to the southeast. The Triassic Basin formations have been intruded by north northwest-south southeast trending igneous diabase dikes during the Jurassic Period (~144 to 208 Ma), and contain northeast-southwest trending normal faults. However, none of these faults were indicated to exist at the subject site on the 1985 geologic map (NCDENR, 1985).

In the Piedmont, the bedrock is typically overlain by a mantle of weathered rock (residuum/saprolite), which has an average thickness of approximately 25 feet. The residuum/saprolite consists of varying amounts of unconsolidated clays, silts, and sands, with lesser amounts of rock fragments. Due to the range of the parent rock composition and the variable susceptibility to weathering of each rock type, the residuum/saprolite range widely in color, texture, and thickness. Generally, the residuum/saprolite is thickest near inter-stream divides (ridges) and thins toward stream beds. In profile, the residuum/saprolite normally grades from clayey soils near the land surface to sandier, partially weathered rock above competent bedrock (Buxton, 2014).

2.2.2 Site Geology

The geology of the site can be subdivided into six units which include fill, flood plain, soil horizon, residuum, partially weathered rock, and layered rock. These units generally grade downward from a soil horizon, to residuum, to partially weathered rock and finally layered rock. Fill materials were limited to the road bed and berm located around the east and west sides of MW-4. Flood plain sediments were only identified at MW-4 on the southeast corner of the site. The following summary of site-specific units is based on boring logs originally included in the *Design Hydrogeologic Report* (Buxton, March 2016).

2.2.2.1 FILL

Fill materials were primarily identified in the road bed and berm located around the east and west sides near MW-4 and generally consisted of mottled reddish yellow, orange, brown, and light gray sandy silty clay with quartz and brick gravel.

2.2.2.2 FLOOD PLAIN

Flood plain sediments were only located adjacent to MW-4 on the southeast corner of the site. Sediments were associated with a former adjacent intermittent tributary creek and can be generally characterized as mottled light gray fine sandy silty clay. The flood plain sediments were approximately 5 feet thick in this area and had been deposited above residuum. Based on geotechnical laboratory data, the flood plain sediments were identified as lean clay (CL) under the Unified Soil Classification System (USCS).

2.2.2.3 SOIL HORIZON

The soil horizon is characterized as mottled yellowish, brown, orange, and red silty clay and clayey silt. Root structures were common. The soil horizon at the site is formed from the continued weathering and biologic reworking of residuum, and ranges from 2 to 15 feet in thickness, when present. Based on geotechnical laboratory data, the soil horizon consisted of clayey sand (SC), elastic silt (MH), and lean clay (CL) and had a hydraulic conductivity of 2.86 x 10⁻⁷ cm/sec.

2.2.2.4 RESIDUUM

Residuum is characterized as mottled (black and gray) red and reddish brown sandy silty clay with infrequent quartz gravel and cobbles. Residuum is characteristically fissile, often breaking in horizontal sheets. Residuum generally retains the remnant texture, structure and mineral content of the rock from which it was formed, and ranges from 5 to 15 feet in thickness. Residuum has a Standard Penetration Resistance (N) of less than 100 blows per foot. Based on geotechnical laboratory data, the residuum consisted of lean clay (CL) with hydraulic conductivity ranging from 7.69 x 10^{-8} cm/sec to 3.69 x 10^{-9} cm/sec.

2.2.2.5 PARTIALLY WEATHERED ROCK

Partially weathered rock is characterized as mottled (light green and purple) brown, reddish gray, and weak red silty clay and weathered mudstone, which are often fissile. Partially weathered rock generally retains the remnant texture, structure, and mineral content of the rock from which it was formed, and ranges from 5 to 40 feet in thickness. Partially weathered rock has an N-value of 100 blows per foot or greater and can generally be drilled with standard hollow-stem auger drilling technology. Based on geotechnical laboratory data, partially weathered rock consisted of lean clay (CL). Hydraulic conductivity ranged from 2.433 x 10⁻⁴

cm/sec to 7.154 x 10^{-8} cm/sec, according to slug or recovery test data (for wells screened solely in partially weathered rock).

2.2.2.6 LAYERED ROCK

Based on rock coring activities conducted near MW-7/MW-7R and visual inspection of the layered rock exposed on the north side of the MW-4 area, layered rock at the site is primarily composed of reddish to light tan gray mudstone, cross-bedded muddy sandstone, and muddy sandy conglomerate (rounded quartz gravel and cobbles). Layered rock generally occurs as horizontally oriented and relatively thin intermittent layers (especially within the upper 15 feet of contacting layered rock) across the site, based on rock coring and the horizontal fissile nature of residuum and partially weathered rock. Layered rock contained horizontal to near vertical fracturing. Large fractures were observed in weathered mudstone to the immediate northeast near MW-8. The occurrence of layered rock at the site was generally defined by auger refusal.

2.2.3 Regional Hydrogeology

The hydrogeologic regime in the Triassic Basin is characterized by fractured, bedded sedimentary sequences underlying soil and saprolite. Groundwater may occur under both unconfined, water table conditions (similar to most Piedmont crystalline sites) and confined conditions. Controls of groundwater flow are a combination of the interaction of factors including topography, stratigraphic sequence and lithology, distribution and intensity of fractures, presence of diabase intrusions (both dams and sills), basalt flows, and weathering processes of the bedrock (Venkatakrishnan and Gheorghiu 2003).

Groundwater flow has both local and regional components with shallow groundwater discharging locally to nearby streams (and some movement downward into the deeper flow system) and deeper groundwater flow toward points of regional discharge, that are generally higher order stream courses (Venkatakrishnan and Gheorghiu 2003). Both shallow and deep groundwater systems generally flow in a direction similar to the topographic gradient.

Although the Site is not underlain by metamorphic and/or igneous rocks, the conceptual groundwater system for fractured crystalline rocks developed by Heath (1980), Harned and Daniel (1992), and LeGrand (1988, 1989, 2004) is applicable based on review of the available data from previous studies and investigations.

The groundwater system is a two-medium system generally restricted to the local drainage basin. The groundwater occurs in a system composed of two interconnected layers: residual soil/saprolite and weathered rock (TZ) overlying fractured sedimentary rock. The systems are separated by the TZ portion of the residual soil, saprolite, and weathered rock. Typically, the residual soil/saprolite is partially saturated and the water table fluctuates within it. Water movement is generally preferential through the weathered/fractured and fractured bedrock of the TZ (i.e., enhanced permeability zone). The character of such aquifers results from the combined effects of the rock type, fracture system, topography, and weathering. Topography exerts an influence on both weathering and the opening of fractures, while the weathering of the crystalline rock modifies both transmissive and storage characteristics.

Under natural conditions, the general direction of groundwater flow can be approximated from the surface topography (LeGrand 2004).

Groundwater recharge in the region is derived entirely from infiltration of local precipitation. Groundwater recharge occurs in areas of higher topography (i.e., hilltops) and groundwater discharge occurs in lowland areas bordering surface water bodies, marshes, and floodplains (LeGrand 2004). Average annual precipitation contributing to recharge in the Piedmont ranges from 42 to 46 inches. Mean annual recharge in the Piedmont ranges from 4.0 to 9.7 inches per year (Daniel 2001).

2.2.4 Site Hydrogeology

Site hydrogeology was assessed by Buxton Environmental, Inc. (Buxton) during completion of the Design Hydrogeological Report, dated November 6, 2014 and revised on December 31, 2014 and March 6, 2015. A chronological summary of field activities, as they pertain to development of the current conceptual site model (CSM), are provided in **Table 1**.

Date	Investigation Phase	Work Completed
August 5 – 14, 2014	Design Hydrogeologic Report	 Installation of 15 shallow and intermediate depth piezometers (PZM-1, PZM-3, PZM-4, PZM-5, PZM-6, PZM-8, PZM-10, PZM-11, PZM-12, PZM-13, PZM-15, PZM-16, PZM-18, PZM-19 and PZM-20). Installation of 4 nested shallow and intermediate piezometer pairs (PZM-7s/PZM-7, PZM-9s/PZM-9, PZM-14s/PZM-14, and PZM-17s/PZM-17). Installation of 1 nested intermediate and deep piezometer pair (PZM-2/PZM-2D). Collection and select testing of 154 split-spoon Standard Penetration Tests (SPT) and five Shelby Tube samples. Completion of 6 water level gauging events in piezometers PZM-1 through PZM-18) on August 21, September 3, September 18, October 1, October 14, and October 31, 2014. Completion of slug tests in piezometers PZM-1, PZM-2, PZM-2D, PZM-5, PZM-8, PZM-12, PZM-13, PZM-15 and PZM-17.
November 24 – December 2, 2014	Design Hydrogeologic Report – Addendum, Revision 1	 Installation of 8 shallow and intermediate piezometers (PZM-21, PZM-22, PZM-24, PZM-25, PZM-26, PZM-27, PZM-28, and PZM-29). Installation of 1 nested shallow and intermediate piezometer pair (PZM-23s/PZM-23). Collection of 67 SPT samples.
March 6, 2015	Design Hydrogeologic Report – Addendum, Revision 2	 Updated Water Quality Monitoring Plan (WQMP) as follows: Proposed compliance monitoring network to consist of 1 up-gradient well (MW-1) and 7 cross- or down-gradient wells (MW-2 through MW-8); Four piezometers (PZM-1 [MW-4], PZM-22 [MW-5], PZM-27 [MW-7], and PZM-28 [MW-8]) installed during the Design Hydrogeologic investigation were to be converted from piezometers to permanent compliance monitoring wells. Proposed 2 surface water sampling locations: 1 collected at a tributary creek of Gulf Creek which crosses Moncure-Flatwood Rd. approximately 2,000 feet south of the site (SW-1); and one surface water sample will be collected along Shaddox Creek approximately 2,000 feet west of the site (SW-2). Proposed 1 composite leachate sample be collected from the above-ground holding tank. Identified that only 1 sampling event would be conducted prior to CCP placement, as agreed upon with Ms. Elizabeth Werner of NCDEQ on February 20, 2015.
September 17, 2015	Compliance Well Installation / Abandonment	 Summarized abandonment of PZM-28 (dry), which was proposed to be converted to compliance monitoring well MW-8. A deeper replacement well (MW-8) was installed adjacent to PZM-28.
August 13 – December 2, 2014	Compliance Well Installation	• Conversion of piezometers PZM-1, PZM-22, and PZM-27 to monitoring wells MW-4, MW-5, and MW-7, respectively.

Table 1 - Chronology of Subsurface Exploration

Date	Investigation Phase	Work Completed
June 19 – 30, 2015	Compliance Well Installation / Piezometer Abandonment	 Installation of monitoring wells MW-1, MW-2, MW-3, MW-6, MW-8, and BG-1. Slug testing of wells MW-1 through MW-8 and BG-1. Abandonment of piezometers PZM-5, PZM-10, PZM-11, PZM-12, PZM-13, PZM-15, PZM-16, PZM-18, PZM-29, PZM-2/2D, PZM-7s/7, PZM-14s/14, and PZM-17S/17.
July 30, 2015	Piezometer Abandonment	Abandonment of PZM-9s and PZM-9
February 8 – 9, 2016	Piezometer Abandonment	 Abandoned piezometers PZM-21, PZM-23s, PZM-23, PZM-24, PZM-25, and PZM-26
April 18 – 19, 2017	Compliance Well Installation / Piezometer Abandonment	Abandoned piezometers PZM-3, PZM-4, PZM-6, PZM-8, PZM-19 Installed monitoring well MW-7R
December 26, 2018	Compliance Well Installation	Installation of additional background well BG-2

Evaluation of geologic and hydrogeologic data obtained during the above-referenced activities and published data sources (e.g., 1993 USGS Moncure, NC topographic quadrangle) indicate the historic presence of two topographic highs in the north-central and south-central portions of the Site prior to development by General Shale. Accordingly, high groundwater elevations were regularly recorded in piezometers PZM-14s (north-central) and PZM-16, -23s, and -25 (south-central), resulting in radial flow from these areas. As piezometers have been abandoned during development of the Structural Fill and compliance monitoring wells have been installed, similar high groundwater elevations have regularly been recorded in wells MW-1 (north-central), and MW-5 and MW-6 (south-central). Since piezometers within the limits of the Structural Fill liner have since been abandoned, shallow groundwater has been interpreted to flow east and west from the former north-south trending topographic ridge, as shown on the most recent potentiometric surface map drawn using groundwater elevations calculated for the January 2019 semi-annual sampling event (**Figure 2**).

Hydraulic conductivities calculated from slug test data in piezometers during the Design Hydrogeologic investigation ranged from 1.597 x 10^{-4} centimeters per second (cm/sec) to 3.817 x 10^{-8} cm/sec.

Vertical hydraulic gradients were calculated in nested piezometers during three gauging events, as presented in **Table 2**.

Table 2 – Vertical Hydraulic Gradients

Well Pair	Date	Vertical Gradient (ft/ft)	Direction
PZM-2 and PZM-2D	August 21, 2014	0.29	\downarrow
	December 21, 2014	0.24	\downarrow
PZM-14s and PZM-14	October 31, 2014	0.006	\downarrow
	December 21, 2014	0.19	\downarrow
PZM-23s and PZM-23	December 21, 2014	0.48	\downarrow

Average linear groundwater flow velocities were calculated during the Design Hydrogeologic investigation at piezometers PZM-1, PZM-2, PZM-2D, PZM-5, PZM-8, PZM-10, PZM-12, PZM-13, PZM-15, and PZM-17 using the Darcy equation. Average linear groundwater velocities ranged from 0.0000072 ft/day (0.0026 ft/year) at piezometer PZM-10 to 1.84 ft/day (671.60 ft/year) at piezometer PZM-15. Average linear flow velocity along the eastern side of the Site,

near compliance wells MW-2 and MW-3, were calculated at 0.51 ft/year in piezometer PZM-2 and 0.47 ft/year at piezometer PZM-8.

Since 2014, HDR has calculated seepage velocities between well pairs installed roughly perpendicular to the inferred direction of groundwater flow and presented these data in semiannual monitoring reports. In the most recent semi-annual monitoring report (January 2019), seepage velocities were calculated at 10.0 ft/year between wells MW-1 and MW-2 and 5.2 ft/year between wells MW-5 and MW-4.

2.3 Receptor Information

In 2014, Buxton conducted a water supply well survey within 300 feet of the fill boundary of the Structural Fill. One on-site water supply well was identified adjacent to a small pond near the equipment parking and maintenance building, approximately 300 feet east of the former location of PZM-1. No additional water supply wells were identified during the survey; however, Buxton did note that the surrounding area has historically been used for rural residences and agriculture. Thus, the potential for water supply wells beyond the 300-foot perimeter of the fill boundary exists.

3 Proposed Assessment Plan

The activities proposed herein were designed to obtain additional geologic, hydrogeologic, and water quality data to advance the current understanding of the site-specific CSM. Based on readily available Site data and dependent upon accessibility, HDR anticipates collecting the following samples during implementation of the assessment workplan:

- Soil samples from areas within the former General Shale mine, but beyond the area of CCP placement by Charah
- Groundwater samples from proposed and existing monitoring wells
- Surface water samples from proposed and existing locations
- Leachate samples from the designated leachate sampling location

Existing surface water and groundwater quality data from compliance monitoring activities will be used to supplement data obtained from this assessment work. In addition, existing leachate data will be used in the evaluation of data obtained from this assessment work. A summary of the proposed exploration plan including estimated sample quantities and estimated depths of soil borings and monitoring wells is presented in **Table 3**. Proposed sampling locations are shown on **Figure 3**.

Table 3 – Proposed Assessment Plan

	Soil Samples	Regolith Monitoring Wells	Bedrock Monitoring Wells	Surface/Free Water Samples
Quantity	10	3	1	7
Depth (ft. bgs)	0-2'	20 - 40	60	Surface
Туре	Grab	Type II	Type III	Grab
Casing Depth	NA	NA	40	NA

Data collected during this assessment, in addition to existing data, will be used to evaluate sitespecific geochemical and groundwater flow and transport conditions via three-dimensional groundwater modeling.

3.1 Ash Evaluation

Duke Energy is required to provide results of laboratory testing of ash from sources shipped to the Structural Fill. Between 2012 and 2019, Charah received annual laboratory results from Duke Energy from testing of ash at the Riverbend Steam Station and L.V. Sutton Plant facilities. Laboratory analyses varied by sampling date, but generally consisted of the following:

- Select pesticides using Solid Waste Method SW-846 Method 8081B
- Leachable (TCLP) semi-volatile organic compounds (SVOCs) using SW-846 Method 8270
- Chlorinated herbicides using SW-846 Method 8151A
- Volatile organic compounds using SW-846 Method 8260
- Leachable (TCLP) RCRA Metals using United States Environmental Protection Agency (USEPA) Methods 200.7 or SW-846 Method 1311/6010C; mercury was analyzed using USEPA Method 245.1 or SW-846 Method 1311/7470A
- Polychlorinated biphenyls (PCBs) using SW-846 Method 8082

• Sulfate using USEPA Method 9056

In addition, in-place ash samples have been collected by Charah and Chatham County since 2016. Laboratory analyses have generally included leaching potential of inorganics, volatile organic compounds, semi-volatile compounds, pesticides, and herbicides using TCLP methods; reactive cyanide and sulfide; corrosivity; and ignitability. HDR will compare the existing laboratory data for ash samples to laboratory data for groundwater and surface water samples collected during detection monitoring events to evaluate the Structural Fill as a potential source. The results of this evaluation will be used in the ASD portion of work described further in **Section 4** of this Plan.

3.2 Groundwater

3.2.1 Monitoring Well Installation

The current compliance groundwater monitoring network consists of two background wells (BG-1 and BG-2) and eight cross- or down-gradient monitoring wells (MW-1 through MW-7R and MW-8). Each well was installed within the uppermost aquifer underlying the Structural Fill with well screens set to bracket the water table at the time of installation. Based on the results of semi-annual groundwater monitoring, HDR proposes to install additional monitoring wells to obtain additional geologic, hydrogeologic, and groundwater quality data. Proposed monitoring well locations are shown on **Figure 3**.

3.2.1.1 REGOLITH MONITORING WELLS

Regolith monitoring wells are defined as wells that are screened wholly within the regolith zone and set to bracket the water table surface at the time of installation.

HDR proposes to install two regolith monitoring wells (MW-9 and MW-10) along the southern boundary of CCP placement. If the Structural Fill is closed prior to reaching its permitted capacity, these wells would become new compliance wells at the limit of waste for this portion of the fill. The proposed locations will provide groundwater quality data closer to the anticipated limit of CCP placement and would allow for early detection of a potential release from the Structural Fill.

HDR proposes to install one regolith monitoring well (MW-11) at a location south of Sediment Basin #6 and adjacent the unnamed tributary (west) that traverses the Site property in this area. The well will be installed to evaluate whether the stream is a gaining or losing stream and to compare groundwater geochemistry leaving the Site to observed concentrations in surface water sample location SW-1.

Regolith monitoring wells will be installed using hollow stem auger drilling techniques. At each monitoring well location, a regolith well will be constructed with a 2- inch diameter, Schedule 40 polyvinyl chloride (PVC) screen and casing. Each of these wells will have a 10-foot to 15-foot pre-packed well screen having manufactured 0.010-inch slots.

3.2.1.2 BEDROCK MONITORING WELL

Bedrock monitoring wells are defined as wells that are screened within the partially weathered (PWR)/fractured bedrock below the regolith.

HDR proposes to install one bedrock well (MW-2D) adjacent to monitoring well MW-2, the well with most frequent 2L Standard exceedances to obtain geologic and hydrogeologic data from the PWR/fractured bedrock groundwater flow layer. Groundwater quality data obtained from samples collected from the proposed bedrock well will be compared to analytical results from well MW-2 to evaluate variations in constituent concentrations with depth.

The bedrock monitoring well will be installed using hollow stem augers and air rotary drilling techniques. A double-cased well will be constructed with a 6-inch-diameter PVC outer casing and a 2-inch-diameter PVC inner casing and well screen.

The purpose of installing the cased well is to prevent possible connection of flow zones within the shallow and deeper portions of the unconfined aquifer during well installation. The outer well casing (6-inch casing) will be advanced to auger refusal and set approximately 1 foot into PWR (if present). Note that location-specific subsurface geology will dictate the actual casing depth. The annulus between the borehole and casing will be grouted to the surface using the tremmie grout method. After the grout has been allowed to cure for a period of 24 hours, the borehole will be extended via air rotary drilling approximately 10 feet to 15 feet into transition zone rock. A 2-inch-diameter well with a 5-foot pre-packed well screen will be set at least 2 feet below the bottom of the outer casing.

3.2.1.3 WELL COMPLETION AND DEVELOPMENT

As described above, pre-packed screens will be installed to reduce turbidity during sample collection. The pre-packed screens will consist of environmental grade sand contained within a stainless steel wire mesh cylinder. The sand gradation in the pre-packed screen will be made in advance anticipating a wide range of site conditions; however, HDR believes that the sand will typically be 20/40 mesh silica sand. Additional #2 sand will be placed in the annulus between the pre-packed screen and the formation, extending a minimum of two feet above the top of the well screen. A minimum one-foot to two-foot thick bentonite seal hydrated with potable water will be placed above the sand pack. Cement grout will be placed in the annular space between the PVC casing and the borehole above the bentonite seal and extending to the ground surface. Each well will be finished at the ground surface with a 2-foot square concrete well pad and new 4-inch steel above-grade lockable covers. Following completion, wells will be locked with a keyed pad lock.

WELL DEVELOPMENT

Newly installed monitoring wells will be developed to create an effective filter pack around the well screen and to remove fine particles within the well from the formation near the borehole. Based on site-specific conditions per 15A NCAC 02C .0108(p), appropriate measures (e.g., agitation, surging, pumping, etc.) will be used to stress the formation around the screen and the filter pack so that mobile fines, silts, and clays are pulled into the well and removed.

Water quality parameters (specific conductance, pH, temperature, oxidation reduction potential [ORP], and turbidity) will be measured and recorded during development and should stabilize before development is considered complete. Development will continue until development water is visually clear (< 10 Nephelometric Turbidity Units [NTU] Turbidity) and sediment free. If a well cannot be developed to produce low turbidity (< 10 NTU) groundwater samples after three

hours of development, development will be considered complete and turbidity conditions will be noted.

Following development, sounding the bottom of the well with a water level meter should indicate a "hard" (sediment-free) bottom. If a sediment-free bottom is not achieved, development should continue until the well is free of sediment, or for one hour, whichever occurs first. Development records will be prepared and will include development method(s), water volume removed, and field measurements of temperature, pH, conductivity, and turbidity.

SLUG TESTS

Hydraulic conductivity (slug) tests will be conducted in each newly installed monitoring well in accordance with the requirements of the NCDENR Memorandum titled "Performance and Analysis of Aquifer Slug Tests and Pumping Tests Policy" dated May 31, 2007. Water level change during the slug tests will be recorded by a data logger. The slug test will be performed for no less than 10 minutes or until such time as the water level in the test well recovers 95 percent of its original pre-test level, whichever occurs first. Slug tests will be terminated after 2 hours even if the 95 percent pre-test level is not achieved. Slug test field data will be analyzed using the Aqtesolv (or similar) software using the Bouwer and Rice method.

3.2.2 Groundwater Sampling and Analysis

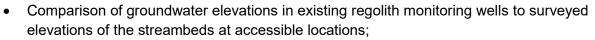
Subsequent to monitoring well installation and development, newly installed wells will be sampled during the next semi-annual groundwater monitoring event using low-flow sampling techniques in accordance with USEPA Region 1 Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (revised September 19, 2017).

During low-flow purging and sampling, groundwater is pumped into a flow-through chamber at flow rates that minimize or stabilize water level drawdown within the well. Indicator parameters are measured over time (usually at 5-minute intervals). When parameters have stabilized within ±0.2 pH units and ±10 percent for temperature, conductivity, and dissolved oxygen (DO), and ±10 millivolts (mV) for ORP over three consecutive readings, representative groundwater is being captured for sampling. Turbidity levels of 10 NTU or less will be targeted prior to sample collection. Purging will be discontinued and groundwater samples will be collected if turbidity levels of 10 NTU or less are not obtained after 2 hours of continuous purging. Groundwater samples will be analyzed by a North Carolina certified laboratory for the constituents listed in the site-specific WQMP and in **Table 4**. Sample collection, handling and storage will be conducted in general accordance with accepted protocol, including chain-of-custody documentation. Quality assurance and quality control (QA/QC) samples (e.g., field blanks) will be collected and analyzed in accordance with the requirements of the WQMP during the semi-annual sampling event.

Groundwater sample results will be compared to Class GA Standards as found in 15A NCAC 02L .0202 Groundwater Quality Standards, last amended on April 1, 2013 (2L Standards) and statistically-derived site-specific background concentrations.

		METHOD		
PARAMETER Field percentere	UNITS	METHOD		
Field parameters pH SU Field water quality meter				
pH		Field water quality meter		
Specific Conductance	µS/cm ⁰C	Field water quality meter		
Temperature	-	Field water quality meter		
Dissolved Oxygen	mg/L	Field water quality meter		
Oxidation Reduction Potential	mV	Field water quality meter		
Turbidity	NTU	Field turbidity meter		
40 CFR Part 257, Appendix III Cons				
Boron	µg/L	EPA Method 6020B		
Calcium	µg/L	EPA Method 6010D		
Chloride	µg/L	EPA Method 300.0		
Fluoride	µg/L	EPA Method 300.0		
рН	SU	EPA Method 9040B (or similar)		
Sulfate	µg/L	EPA Method 300.0		
TDS	µg/L	SM 2540C		
40 CFR Part 258, Appendix IV Cons	stituents			
Antimony	µg/L	EPA Method 6010D		
Arsenic	µg/L	EPA Method 6010D		
Barium	µg/L	EPA Method 6010D		
Beryllium	µg/L	EPA Method 6010D		
Cadmium	µg/L	EPA Method 6010D		
Chromium	µg/L	EPA Method 6010D		
Cobalt	µg/L	EPA Method 6010D		
Fluoride	µg/L	EPA Method 300.0		
Lead	µg/L	EPA Method 6010D		
Lithium	µg/L	EPA Method 6020B		
Mercury	µg/L	EPA Method 7470A		
Molybdenum	µg/L	EPA Method 6010D		
Selenium	µg/L	EPA Method 6010D		
Thallium	µg/L	EPA Method 6020B		
Radium 226	pČi/L	EPA Method 903.1		
Radium 228	pCi/L	EPA Method 904.0		
Total Radium	pCi/L	Total Radium Calculation		
40 CFR Part 258 Appendix I Metals				
Copper	µg/L	EPA Method 6010D		
Nickel	μg/L	EPA Method 6010D		
Silver	μg/L	EPA Method 6010D		
Vanadium	μg/L	EPA Method 6010D		
Zinc	μg/L	EPA Method 6010D		
ZIIIC	μy/L			

Table 4 – Groundwater and Surface Water Quality Parameters and Constituent Analytical Methods


Note: SU – Standard Units; µS/cm – microSiemen per centimeter; ⁰C – degrees Celsius; mg/L – milligrams per liter; mV – millivolt; NTU – nephelometric turbidity units; µg/L – micrograms per liter; pCi/L – picoCuries per liter.

3.3 Surface Water

As previously mentioned, concentrations of arsenic, cobalt, copper, lead, TDS, and zinc that exceeded 2B Standards have been reported in surface water samples collected from the SW-1 sample location, located approximately 3,000 feet south of the southern-most permitted waste boundary and approximately 4,800 feet south/southeast of the current limit of CCP waste placed in Cell 6C. Under ambient conditions, this sample location has the potential to receive discharge from two unnamed streams and an approximate 0.75-acre farm pond, as well as permitted NPDES discharges from the Site and adjacent mine operated by General Shale. The purposes of the surface water assessment proposed herein are to evaluate the potential for groundwater to discharge to surface water and to evaluate other potential sources of constituents observed in samples collected at the SW-1 location.

3.3.1 Baseflow Evaluation

HDR proposes to evaluate the origin of flow into the two unnamed streams that flow through or adjacent to the Site through completion of the following:

- Comparison of groundwater elevations in existing regolith monitoring wells to the surveyed elevation of the bottom of the Mine Pond; and,
- Identification of seeps at accessible locations.

Results of the baseflow evaluation will enable Charah to estimate contribution of flow from NPDES discharge points versus groundwater baseflow into the streams. Further, this evaluation will inform decisions regarding sampling locations that may be more indicative of Charah's potential contribution to water quality, rather than locations that could represent multiple off-site sources of constituents.

3.3.2 Surface Water Flow Measurements

Low-flow stream flow measurements can be used both to estimate groundwater recharge and as calibration targets for groundwater flow modeling. Gulf Creek to the east and Shaddox Creek to the west of the Structural Fill receive groundwater from the area where groundwater modeling is proposed. Measurements of these streams during low-flow periods (e.g., late September when there has been no precipitation for several days or weeks) can be used to estimate these key parameters for the groundwater modeling effort. Stream flows should be measured where the largest amount of flow is integrated. Both of these streams pass under Corinth Road just before they discharge to the Cape Fear River. Measurements at these locations, if accessible, will provide needed information for the model. A more focused measurement can be made in the tributary to Gulf Creek that leaves the Site and crosses beneath Moncure-Flatwood Road. The smaller stream's flow can be used to estimate groundwater recharge and discharge near the Site to create a refined water budget. Note that known wastewater discharges to these streams will be accounted for in the stream flow estimates. Stream flow measurement will follow the appropriate USGS stream flow measurement method for the size and depth of these creeks at the measurement locations. The best locations to measure the flows will be determined in the field.

3.3.3 Surface Water Sampling

To further delineate the nature and source of constituents in surface water, HDR proposes to collect surface water samples from the locations specified in **Table 5**. Proposed sample locations are shown on **Figure 2**.

Sample ID	Location
SW-1	Existing SW-1 location ~3,000 feet south of permitted waste boundary on Gulf Creek Tributary
SW-2	Existing SW-2 location south of confluence of Shaddox Creek and Shaddox Creek Tributary
SW-3	Proposed location on Shaddox Creek Tributary ~1,700 feet west of permitted waste boundary
SW-4	Proposed location adjacent to proposed regolith well MW-11 and south of Sediment Basin #6; on unnamed tributary (west)
FW-1	Proposed location in Mine Pond
FW-2	Proposed location in Sediment Basin #7
FW-3	Proposed location in Sediment Basin #6
Notes:	

Table 5 – Proposed Surface and Free Water Sample Locations

1. SW - surface water

2. FW – free water

At each location, one sample will be collected close to the surface (i.e., 0 foot to 1 foot from surface) of the water body. Prior to sampling, the depth of the water body will be measured by slowly lowering a measuring stick or tape until the bottom surface is encountered, being careful to avoid suspending sediment. The depth to bottom will be noted, and a sampler will be slowly lowered to the desired depth to collect the sample. The sample will be retrieved and transferred into laboratory-provided sample containers. Surface and free water samples will be analyzed for the same constituents as groundwater samples (Table 5). Given the potential for sediment to artificially bias laboratory results high, unfiltered and field-filtered samples will be collected at each location and analyzed for total and dissolved concentrations, respectively.

3.4 Geochemical Evaluation

The geochemistry of the constituents that have been detected in groundwater samples can provide information about their sources and fate and transport processes through the environment. Evaluations of the suites of constituents detected can help differentiate groundwater that originates at the Structural Fill from groundwater that originates elsewhere. Much of the data needed to evaluate the geochemistry is already being collected during the semi-annual monitoring program; however, some additional sampling and analyses will be necessary make the geochemical evaluations more comprehensive and conclusive.

Prior to CCP placement in the Structural Fill, groundwater sampling was conducted during two events in August and October 2015, representing pre-ash groundwater conditions. Constituent concentrations in pre-ash groundwater samples collected from monitoring wells within the former General Shale mine are consistently higher than those reported in background well BG-1 collected during the same events or in BG-2 collected in 2018 and 2019; both BG-1 and BG-2 are located outside of the former General Shale mine boundary.

HDR proposes to evaluate the potential effects historic earthwork may have had on pre-ash soil and groundwater via collection and analysis of 10 surficial soil samples from the southern portion of the permitted Structural Fill and select background locations, as follows:

- 1. Low-detection level analyses of the constituents detected in the groundwater and surface water:
 - Antimony, arsenic, barium, beryllium, boron, cadmium, calcium, chromium, cobalt, lead, lithium, molybdenum, selenium, and thallium using USEPA Method 200.8 (or similar); and,
 - Mercury using USEPA Method 245.1.
- Synthetic Precipitation Leaching Procedure (SPLP) testing of three of soil samples (chosen after the low-detection level analyses) for the constituents detected in groundwater (note that chemical analyses of leachate samples generated by the SPLP testing needs to be at detection levels that can be compared to the detected concentrations in the groundwater):
 - Antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, lead, molybdenum, and selenium using USEPA Method 6010D;
 - Boron, lithium, and thallium using USEPA Method 6020B;

- Mercury using USEPA Method 7470A;
- Total dissolved solids using Standard Method (SM) 2540C;
- pH using USEPA Method 9040C;
- Fluoride and sulfate using USEPA Method 300.0; and,
- Chloride using SM 4500-CI-E-2011
- 3. Analyses of soil samples for organic carbon and other geochemical properties that affect constituent transport.

When the data above is collected and combined with existing (semi-annual monitoring) and proposed (see **Sections 3.1 through 3.3**), it will be used to evaluate the occurrence (e.g., boron) or absence (e.g., antimony) of constituents and which constituents and parameters are correlated. These evaluations will include comparison of ratios between analytes with reference to potential sources, balancing cations and anions, and comparison to water parameters such as oxygen-reduction potential (ORP), dissolved oxygen (DO) and pH. This information will be used to differentiate groundwater chemistry at individual wells and to help prepare for potential constituent fate and transport modeling.

3.5 Groundwater Modeling

Groundwater modeling can be used to demonstrate groundwater movement patterns in the subsurface near the Structural Fill and to simulate the fate and transport of the constituents detected during groundwater monitoring. The model predictions can be used in conjunction with other information, such as geochemical analyses, to identify potential sources of the constituents. The model and model report will be developed in general accordance with the guidelines found in the memorandum Groundwater Modeling Policy, NCDENR DWQ, May 31, 2007. Modeling will be conducted in two parts: 1) groundwater flow modeling and 2) groundwater fate and transport modeling. In general, the groundwater flow modeling will consist of the following steps:

- Data compilation/Conceptual model development Data from site investigations and from regional and national sources such as NOAA, and the USGS will be compiled into a 3-dimensional database to develop a digital conceptual site model (CSM). This digital CSM will focus on the materials that make up, and stress on, the groundwater flow system in the vicinity of the Site.
- 2. Model set up The digital CSM will be used as the basis for the numerical groundwater model. A model grid will be discretized within the identified model domain and initial hydrogeologic properties will be assigned to geologic material identified within the domain. Existing water sources and sinks will be added to the domain. An initial model will be created and run and compared to the measured data from the Site. The model will be updated as new information is derived from the field activities.
- 3. Model calibration Parameters used in the model will be adjusted to evaluate the best combination that matches parameter constraints and simulates measured conditions. Water levels and stream flows predicted by the model will be compared with measured data to create a model that simulates the Site conditions within acceptable

uncertainty. The model will be calibrated to existing data, but may be refined in the future as additional data are collected, if necessary.

- 4. *Sensitivity Analyses* The importance of parameters used in the model to the uncertainty of the model prediction will be tested through sensitivity analyses. This will allow the uncertainty in the model to be quantified, which will put the predictive simulations into context.
- 5. *Predictive Modeling, Particle Tracing* The calibrated model will be used to predict where water originating at the Structural Fill will ultimately discharge and which monitoring wells are in that path (forward particle tracking). A reverse approach can also be done where particles are placed at monitoring wells and the location where the water enters the aquifer can be identified (reverse particle tracking). These analyses can also predict the time of travel for the water from one location to another given the average groundwater gradients.

Once the flow model is calibrated and particle tracking have been completed, simulations of the fate and transport of constituents will be conducted using the following steps:

- 1. *Model Calibration* Parameters used in the fate and transport model will be adjusted to determine the best combination that matches parameter constraints and simulates measured concentrations of constituents. Constituent concentrations predicted by the model will be compared with measured data to create a model that simulates Site conditions within acceptable uncertainty. The model will be calibrated to existing data, but may be refined in the future as additional data are collected, if necessary.
- 2. Sensitivity Analyses of Fate and Transport Model The importance of parameters used in the model to the uncertainty of the model prediction will be tested through sensitivity analyses. This will allow the uncertainty in the model to be quantified, which will put the predictive simulations into context.
- 3. *Predictive Modeling, Constituent Fate and Transport* The possibility of alternative sources for constituents can be tested using the calibrated fate and transport model. This evaluation will be undertaken in conjunction with the geochemical evaluation described in Section 3.4 above.

4 Reporting

Subsequent to the conclusion of groundwater modeling, HDR will prepare an Assessment Monitoring Report (AMR) to summarize the activities proposed herein. The AMR will, in part, supplement the Alternate Source Demonstration (ASD) of exceedances that was previously submitted to the NCDEQ on March 29, 2019. The AMR will consist of the following components:

- Executive Summary
- Site History and CCP Characterization
- Receptor Information
- Regional Geology and Hydrogeology
- Site Geology and Hydrogeology
- Soil Sampling Results
- Groundwater Sampling Results
- Geochemical Evaluation
- Groundwater Modeling Results
- Conclusions and Recommendations
- Figures
- Tables
- Appendices

The AMR will provide the results of one iterative assessment phase. No off-site assessment or access agreements are anticipated to be utilized during this phase of work.

This page intentionally left blank.

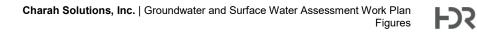
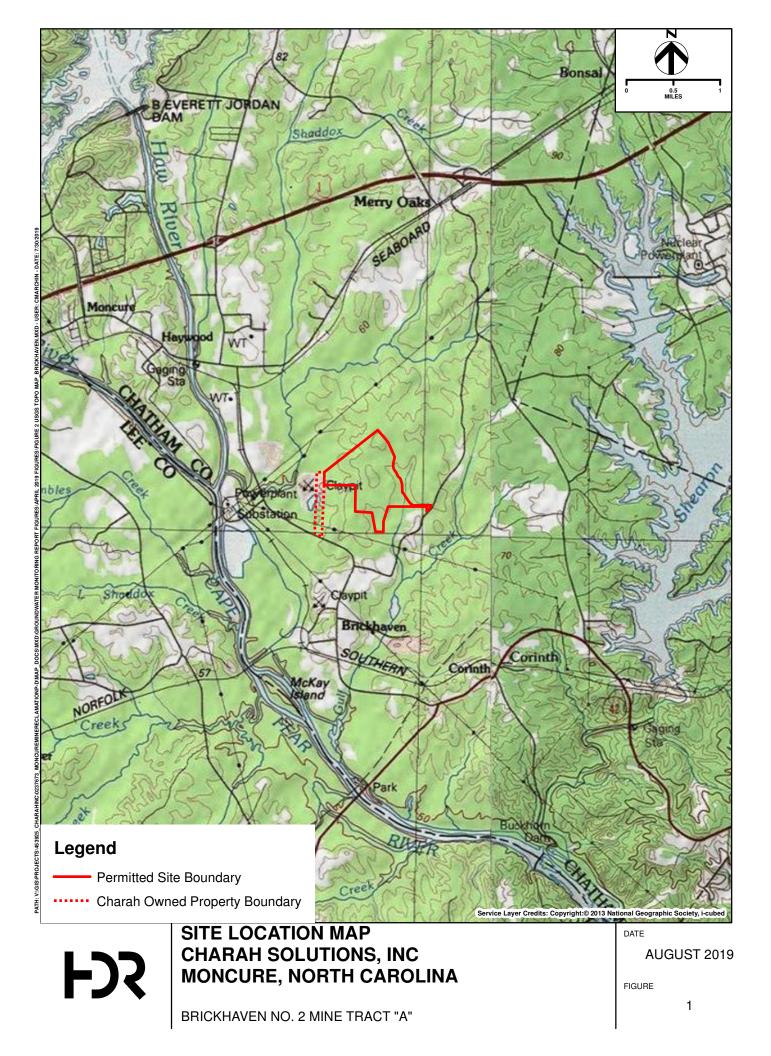
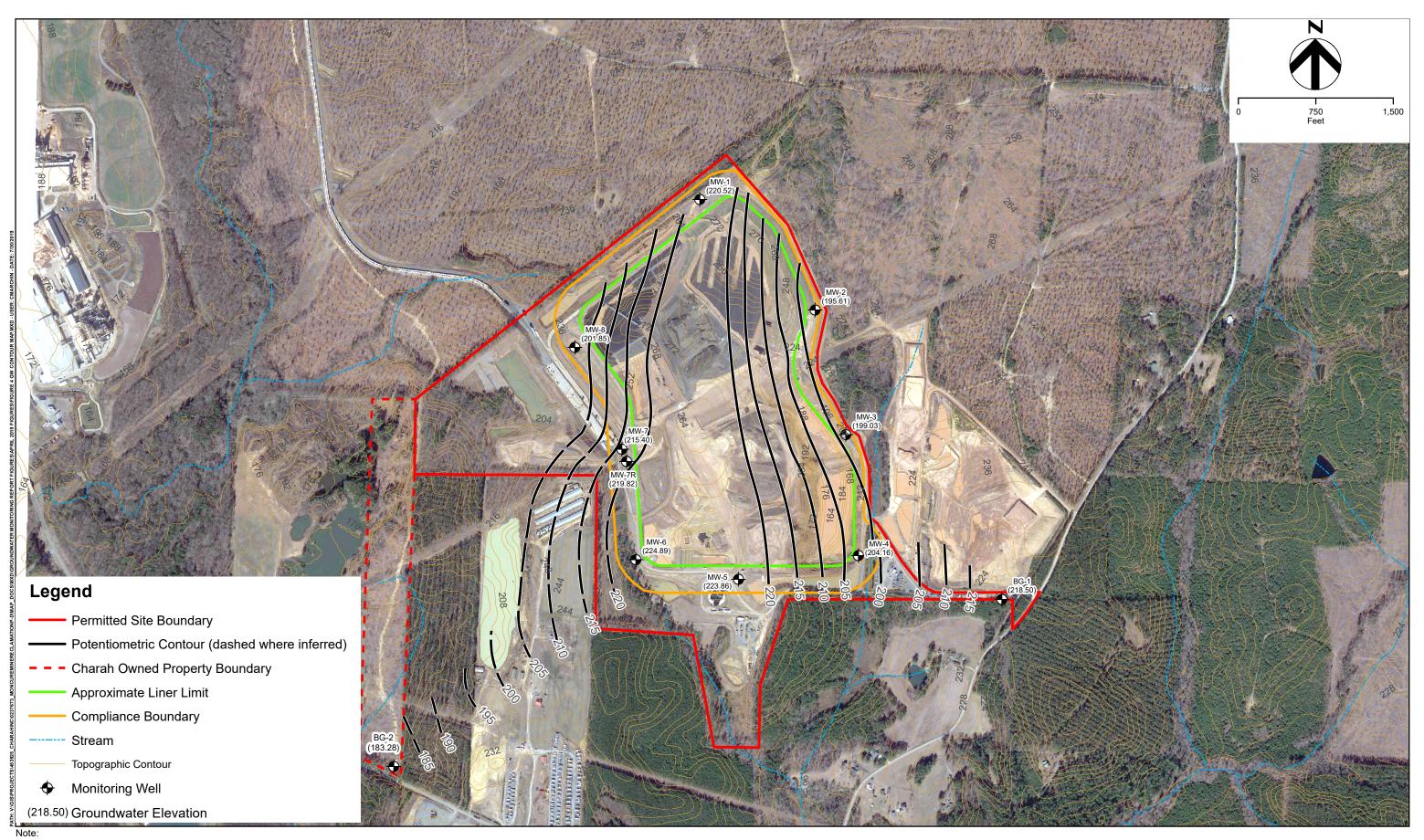


Figure 1 – Site Location Map

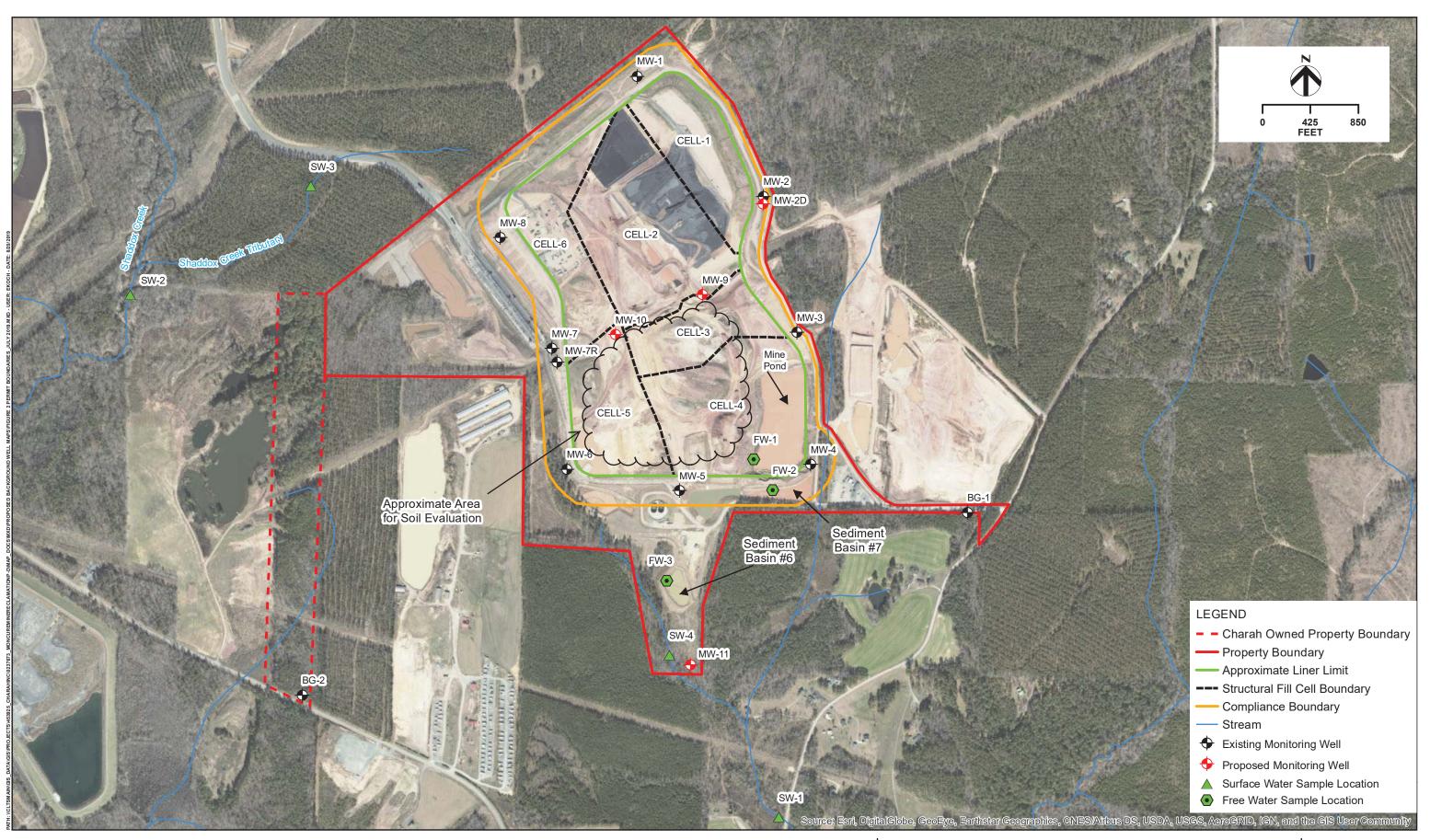

Figure 2 – Potentiometric Surface Map – January 2019

FJS


Figure 3 – Sample Location Map

This page intentionally left blank.

This page intentionally left blank.



BRICKHAVEN NO. 2 MINE TRACT "A"

POTENTIOMETRIC SURFACE MAP - JANUARY 2019

DATE AUGUST 2019 FIGURE

Groundwater elevations derived from depth to water measurements collected on January 21, 2019.
 Topography data for the site was obtained from NCDOT Geographic Information System (GIS) website (Dated 2007).
 Aerial photography was obtained from Google Earth dated 2018.

DATE

AUGUST 2019

FIGURE

FIGURE 3

FS

440 South Church Street, Suite 1000 Charlotte, NC 28205 704.338.6700

hdrinc.com

© 2019 HDR, Inc., all rights reserved

Attachment D – Assessment Work Plan Implementation Schedule

FX

FS

September 30, 2019

Ms. Elizabeth S. Werner, P.G. Via email <u>elizabeth.werner@ncdenr.gov</u> Hydrogeologist North Carolina Department of Environmental Quality Division of Waste Management – Solid Waste Section 217 West Jones Street Raleigh, North Carolina 27699

Re: Assessment Work Plan Implementation Schedule Brickhaven No. 2 Mine Tract "A" Structural Fill 1910-STRUC-2015 Chatham County FID 1358186

Dear Ms. Werner,

On behalf of Green Meadow, LLC (Owner), HDR Engineering, Inc. of the Carolinas (HDR) is pleased to provide the schedule for implementation of work proposed in the Groundwater and Surface Water Assessment Work Plan (Work Plan) prepared for the above-referenced site, dated August 16, 2019. The Work Plan was approved in correspondence from the North Carolina Department of Environmental Quality (NCDEQ) addressed to Mr. Norman Divers of Charah Solutions, Inc. on September 16, 2019. Per the approval letter, the Owner respectfully submits this schedule to satisfy the two week work schedule requirement.

Please do not hesitate to contact us at (704) 338-6700 or <u>Mark.Filardi@hdrinc.com</u>, if you have questions regarding this submittal.

Sincerely, HDR Engineering, Inc. of the Carolinas

Mark Filardi, PG Senior Geologist

cc: Norman Divers, Charah Solutions, Inc.

Michael Plummer, PE Project Manager

hdrinc.com

440 S Church Street, Suite 1000, Charlotte, NC 28202-2075 704.338.6700

Charah Brick 1.0 2.0 3.0 4.0 4.1 4.2	Activity Name Khaven Schedule NCDEQ Review and Approval NTP Ash Evaluation Field Evaluation Mobilzation	Remaining Duration Start 208d 30-Sep-19 24d 30-Sep-19 1d 01-Nov-19 23d 04-Nov-19 56d 09-Dec-19	Finish 27-Jul-20 31-Oct-19 01-Nov-19 06-Dec-19 27-Feb-20	p	Oct	Qtr 4, 2019 Nov NCDEQ Rev	Dec iew and Approva	Jan I	Qtr 1, 2020 Feb	Mar	Apr	Qtr 2, 2020 May	Jun	Jul	Qtr 3, 2020 Aug 7 27-Jul-20, Char	Se Irah Brickh			
Charah Brick 1.0 2.0 3.0 4.0 4.1 4.2	Khaven Schedule NCDEQ Review and Approval NTP Ash Evaluation Field Evaluation	Duration 208d 30-Sep-19 24d 30-Sep-19 1d 01-Nov-19 23d 04-Nov-19	31-Oct-19 01-Nov-19 06-Dec-19	р 	Oct	Nov NCDEQ Rev	iew and Approva			_	Apr		Jun		Aug				
1.0 2.0 3.0 4.0 4.1 4.2	NCDEQ Review and Approval NTP Ash Evaluation Field Evaluation	24d 30-Sep-19 1d 01-Nov-19 23d 04-Nov-19	31-Oct-19 01-Nov-19 06-Dec-19					I							27-Jul-20, Chai	ırah Brickl			
2.0 3.0 4.0 4.1 4.2	NTP Ash Evaluation Field Evaluation	1d 01-Nov-19 23d 04-Nov-19	01-Nov-19 06-Dec-19					l											
3.0 4.0 4.1 4.2	Ash Evaluation Field Evaluation	23d 04-Nov-19	06-Dec-19			I NTP													
4.0 4.1 4.2	Field Evaluation							I NTP											
4.1		56d 09-Dec-19	27-Eeb-20		Ash Evaluation														
4.2	Mobilzation		27-1 00-20		Field Evaluation														
		1d 09-Dec-19	09-Dec-19				Mobilzat	lion											
4.3	Surface Water Flow Measurements	5d 10-Dec-19	16-Dec-19				Surfa	ace Water Flow I	Veasurements										
	Surface Water Sampling	3d 17-Dec-19	19-Dec-19		Surface Water Sampling														
4.4	Geochemical Evaluation	9d 20-Dec-19	06-Jan-20		Geochemical Evaluation														
4.4.1	Soil Sampling	2d 20-Dec-19	23-Dec-19		Soil Sampling														
4.4.2	Laboratory Analysis	7d 26-Dec-19	06-Jan-20				-	Laborator	y Analysis										
4.5	Well Installation & Development	10d 07-Jan-20	20-Jan-20	_	Well Installation & Development														
4.6	Slug Testing	11d 21-Jan-20	04-Feb-20	_					Slug Testir	ng									
4.7	Groundwater Sampling & Analysis	17d 05-Feb-20	27-Feb-20							Groundwater Sa	mpling & Analy	/sis							
4.7.1	Field Sampling	6d 05-Feb-20	12-Feb-20						Field S	Sampling									
4.7.2	Laboratory Analysis	11d 13-Feb-20	27-Feb-20							Laboratory Analy	/sis								
5.0	Groundwater Modeling	90d 21-Jan-20	27-May-20					+				+	Groundwater M	lodeling					
5.1	Conceptual Site Model	10d 21-Jan-20	03-Feb-20						Conceptua	al Site Model									
5.2	Model Setup	11d 04-Feb-20	18-Feb-20		Model Setup														
5.3	Flow Modeling	23d 19-Feb-20	20-Mar-20			Flow Modeling													
5.4	Fate and Transport Modeling	20d 23-Mar-20	20-Apr-20								Fa	te and Transpo	rt Modeling						
	Predictive Modeling	11d 21-Apr-20	05-May-20									Predictive	-						
5.6	Reporting	15d 06-May-20	27-May-20										Reporting						
6.0	Assessment Monitoring Report	42d 28-May-20	27-Jul-20									I			Assessment M	lonitoring			

FS

HDR Engineering, Inc. of the Carolinas 440 S Church Street, Suite 1000 Charlotte, NC 28202-2075 704.338.6700 NC License F0116

hdrinc.com

© 2020 HDR, Inc., all rights reserved